B. A. Gizhevskii, M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, E. I. Patrakov, N. N. Melnikov, Vas. V. Zapariy, S. V. Ruzaev, Vl. V. Zapariy
FRACTOGRAPHIC STUDY OF THE ARMOR STEEL OF SELF-PROPELLED ARTILLERY GUNS OF THE RED ARMY
DOI: 10.17804/2410-9908.2020.2.026-037 The article presents a study of the fractures of steels which were used to make armor elements of SU-85 and SU-100 self-propelled artillery guns produced at Uralmash (UZTM) in 1943–1945 and are on display at the Museum of military equipment of the Ural Mining and Metallurgical Company (Verkhnyaya Pyshma, Sverdlovsk Region). In all the investigated samples of armored steel, an increased content of sulfur and phosphorus was found. It is shown that the fracture obtained at room temperature has a predominantly ductile transcrystalline character. The observed cleavage facets are associated with sulfide precipitates. The presence of oxide particles is not accompanied by local brittle fracture of the steel. Testing of the steel cooled in liquid nitrogen shows a decrease in the share of the ductile component in the fracture, but it does not lead to transcrystalline fracture.
Acknowledgment: The work was performed under the programs Spin, No. AAAA-A18-118020290104-2 and Pressure, No. AAAA-A18-118020190104-3. The historical part of the study was made by Vas. V. Zapariy and N. N. Melnikov in the framework of the IIAA basic budget financing topic “Rus-sia in the Regional Dimension of the Economic, Political, and Sociocultural Modifications of the Modern Time”. Keywords: armored steel, fracture surface, transcrystalline fracture, sulfides References: 1. Melnikov N.N., Gizhevsky B.A., Zapary Vas. V., Zapary Vlad. V. The history of creating cannon-proof 8S armor. Chernye Metally, 2019, no. 5, pp. 70–76. (In Russian).
2. Ustyantsev S.V., Kolmakov D.G. Boevye mashiny Uralvagonzavoda. Tank T-34 [Combat Vehicles of the Uralvagonzavod. Tank T-34]. Nizhniy Tagil, Media-Print Izdatelskiy Dom Publ., 2005, 232 p. (In Russian).
3. Vysokovsky S.I., Guglin N.N., Levin L.S., Maresev M.I., Filorikyan B.K. Ways of increasing the ballistic resistance of rolled steel armor for tanks. Voprosy Oboronnoy Tekhniki. Series XX, 1976, no. 63. (In Russian).
4. Guderian G. Vospominaniya soldata [Erinnerungen eines Soldaten. Heidelberg, 1951]. Moscow, Voenizdat Publ., 1954, 140 p. (In Russian).
5. Sadovsky V.D., Goppe N.P. Austenite transformations in chromium-nickel steel. Uralskaya Metallurgiya, 1937, no. 3, pp. 43–48. (In Russian).
6. Zyuzin V.I., Sadovskii V.D., and Baranchuk S.I. Effect of alloying elements on the position of the martensitic point, amount of retained austenite, and its stability upon tempering. Metallurg, 1939, nos. 10–11, pp. 75–80. (In Russian).
7. Bain E.C. Functions of the Alloying Elements in Steel, Cleveland, Amer Soc. Met., 1939, 312 p.
8. Goodremon E. Spetsialnyye stali, t. 1 [Von Eduard Houdremont. Handbuch der Sonderstahlkunde, Unter Mitarbeit von H.-J. Wiester, 3. verbesserte Aufl. I. Bd. Berlin, Springer-Verl., Düsseldorf, Stahleisen, 1956]. German. transl., ed. A.S. Zaimovsky and M.L. Bernstein, Moscow, State scientific and technical publishing house of literature on ferrous and non-ferrous metallurgy, 1959, 952 p. (In Russian).
9. Zav'yalov A.S. K Teorii Legirovaniya i Term. Obrab. Stali [Theory on Alloying and Heat Treatment of Steel]. Moscow, TsNIIKTP Press, 1943. (In Russian).
10. Schastlivtsev V.M., Kut’in A.B., and Smirnov M.A. Ispravlenie struktury i izlomov peregretoi konstruktsionnoi stali [Structural Distortion and Fractures of Super-heated Structural Steel]. Yekaterinburg, UrO RAN, 2003. (In Russian).
11. Saraev Yu.N., Gladkovsky S.V., Lepikhin S.V., Dvoynikov D.A., Kamantsev I.S., Veselova V.E. Influence of welding technology on the structure, mechanical properties and fracture toughness of 09G2S steel welded joints. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 5, pp. 23–42. Available at : http://dream-journal.org/DREAM_Issue_5_2017_Saraev_Yu.N._et_al._023_042.pdf
12. Gladkovsky S.V., Kuteneva S.V., Kamantsev I.S., Galeev R.M., Dvoynikov D.А. Formation of the mechanical properties and fracture resistance characteristics of sandwich composites based on the 09G2S steel and the EP678 high-strength steel of various dispersion. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 6, pp. 71–90. Available at: http://dream-journal.org/DREAM_Issue_6_2017_Gladkovsky_S.V._et_al._071_090.pdf
13. Levit V.I., Smirnov S.V., Bogatov A.A., Kolmogorov V.L., Davydova L.S., Patrakov E.I., Shalimova A.V. Estimating the damageability of a deformed metal. Phys. Met. Metall., 1982, vol. 54, no. 4, pp. 149–155.
14. Crouch I.G., Cimpoeru S.J., Li H., Shanmugam D. Armour steels. In: The Science of Armour Materials, ed. by I.G. Crouch, Series “Woodhead Publishing in Materials”, Woodhead Publishing, 2017, pp. 55–115.
15. Sadovskii V.D., Kutiin A.B., Gerbikh N.M. Transcrystalline embrittlment of hardened steel due to step-cooling in austenite region. Doklady Akademii Nauk SSSR, 1989, vol. 305, no. 3, pp. 611–613. (In Russian).
16. Vorob'ev N.I., Mirzaev D.A., Tokovoi O.K., Fominykh E.A., Yakovleva I.L. Sulfides in forgings of 40KhGM structural steel. Russian metallurgy (Metally), 2006, vol. 2006, no. 2, pp. 119–125. DOI: 10.1134/S0036029506020030.
Article reference
Fractographic Study of the Armor Steel of Self-Propelled Artillery Guns of the Red Army / B. A. Gizhevskii, M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, E. I. Patrakov, N. N. Melnikov, Vas. V. Zapariy, S. V. Ruzaev, Vl. V. Zapariy // Diagnostics, Resource and Mechanics of materials and structures. -
2020. - Iss. 2. - P. 26-37. - DOI: 10.17804/2410-9908.2020.2.026-037. -
URL: http://eng.dream-journal.org/issues/2020-2/2020-2_290.html (accessed: 12/21/2024).
|