Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2020 Issue 2

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. V. Gladkovsky, P. D. Nedzvetsky, D. I. Vichuzhanin, S. V. Kuteneva, S. V. Lepikhin

BRITTLE FRACTURE RESISTANCE AND DAMPING PROPERTIES OF A STEEL-RUBBER METAL-POLYMER COMPOSITE

DOI: 10.17804/2410-9908.2020.2.006-018

The results of comparative tests for impact bending of 09G2S steel specimens and a cold-glued 3-layer “09G2S steel–1F-1-HFAA-С rubber” composite show that, unlike the base steel, the metal-polymer composite retains increased values of impact strength KCV at temperatures ranging from 20 to −60 °C. The high level of the brittle fracture resistance of the steel-rubber composite under dynamic loading conditions at low temperatures results from the development of the delamination toughening effect characteristic of layered materials. The 100-cycle alternating tests and processing of their results have made it possible to construct mechanical hysteresis loops for the steel base and the metal-polymer composite and to determine the main parameters governing the damping capacity of the materials (the values of the mechanical loss angle tangent and the components of the complex elastic modulus). The possibility of using the metal-polymer composite under study, which is highly resistant to brittle fracture at low climatic temperatures, in highly vibration-resistant structural components of transport systems is demonstrated.

Acknowledgments: The work was done with the use of the equipment installed at the Plastometriya collective use center affiliated to the IES UB RAS; it was performed under the state assignment for the IES UB RAS, theme No. AAAA-A18-118020790147-4 and supported by UB RAS project No. 18-9-1-20 (the Arctic program).

Keywords: low-carbon steel, frost-resistant rubber, microstructure, impact strength, mechanical hysteresis loops, dynamic-mechanical analysis, damping properties

References:

1.  Gladkovsky S.V. Kuteneva S.V., Kamantsev I.S., Galeev R.M., Sergeev S.N., Dvoynikov D.A. Formation of the Mechanical Properties and Fracture Resistance Characteristics of Sandwich Composites Based on the 09G2S Steel and the EP678 High-Strength Steel of Various Dispersion. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 6, pp. 71–90. DOI: 10.17804/2410-9908.2017.6.071-090.

2.  Gladkovskii S.V., Kamantsev I.S., Kuteneva S.V., Dvoynikov D.A., Kuznetsov A.V. Layered Metal Composites with High Resistance to Brittle Fracture at Low Temperatures. AIP Conference Proceedings, 2018, vol. 2053, 020003. DOI: 10.1063/1.5084349.

3.  Gladkovsky S.V., Kuteneva S.V., Sergeev S.N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Materials Characterization, 2019, vol. 154, pp. 294–303. DOI: 10.1016/j.matchar.2019.06.008.

4.  Chawla K.N. Composite Materials Science and Engineering, 4th ed., Department of Materials Science and Engineering, The University of Alabama at Birmingham, Birmingham, USA, 2019, 557 p. DOI: 10.1007/978-3-030-28983-6.

5.  Kablov E.N. Innovative developments of FSUE “VIAM” SSC RF on the implementation of “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”. Aviatsionnye Materialy i Tekhnologii, 2015, no. 1 (34), pp. 3–33 DOI: 10.18577/2071-9140-2015-0-1-3-33. (In Russian).

6.  Meure S., Varley R.J., Dong Yang Wu, Mayo S., Nairn K., Furman S. Confirmation of the healing mechanism in a mendable EMAA-epoxy resin. European Polymer Journal, 2012, vol. 48, pp. 524–531. DOI: 10.1016/j.eurpolymj.2011.11.021.

7.  Chernikov S.A. Expansion of the suppression band of a vibroprotective system by a feedback dynamic damper. Journal of Machinery Manufacture and Reliability, 2015, vol. 44, no. 5, pp. 439–444. DOI: 10.3103/S1052618815050052.

8.  Ponomarev Yu.K. and Ulanov A.M. Comparison of Russian and Foreign Vibration Insulators Made of Wire Damping Materials. Izv. SNTs RAN, 2009, vol. 11, no. 3, pp. 214–218. (In Russian).

9.  Tipalin S.A., Saprytkin B.Yu., Shpunkin N.F. Overview of the multi-layer sheet deformable materials for protection against noise. Izvestiya MGTU «MAMI», 2012, no. 2, pp. 194–199. (In Russian).

10. Kolodkin M.N., Zaytsev A.A. Long-range designs for underground rail tracks. Transport Rossiyskoy Federatsii, 2012, nos. 40–41, pp. 74–76. (In Russian).

11. Verbilov A.F., Kovalev V.V., Ulrich S. A. Nonlinear oscillation processes in the dynamics of the caterpillar drive with rubber-metal pin joint. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 2018, no. 6, pp. 243–247. (In Russian).

12. Antipov V.V., Chesnokov D.V., Kozlov I.A., Volkov I.A., Petrova A.P. Surface preparation aluminum alloy V-1469 before use in the composition of layered hybrid material. In: Trudy VIAM, 2018, no. 64, pp. 59–65. DOI: 10.18577 / 2307-6046-2018-0-4-59-65. (In Russian).

13. Sagomonova V.A., Kislyakova V.I., Tyumeneva T.Yu., Bolshakov V.A. The influence of vibration damping materials' composition on their mechanical loss factor. In: Trudy VIAM, 2015, no. 10, pp. 63–69. (In Russian).

14. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bol'shakov V.A. Novel vibroabsorbing materials. In: Trudy VIAM, 2012, no. 3, pp. 51–54. (In Russian).

15. Ponomarev Y.K., Ulanov A.M. Comparison of Russian and Foreign Vibration Insulators Made of Wire Damping Materials. Izv. SNTs RAN, 2009, vol. 11, no. 3, pp. 214–218. (In Russian).

16. Solomatov V.I., Cherkasov V.D., Fomin N.E. Vibropogloshchayushchie kompozitsionnye materialy [Vibration absorbing composite materials]. Saransk, Izd-vo Mordovskogo un-ta Publ., 2001, 95 p. (In Russian).

17. Embury J.D., Petch N.J, Wright E.S. Fracture of mild steel laminates. Transactions of the Society of Mining Engineers of AIME, 1967, vol. 239 (1), pp. 114–18.

18. Babinsky K., Primig S., Knabl W., Lorich A., Stickler R., Clemens H. Fracture Behavior and Delamination Toughening of Molybdenum in Charpy Impact Tests. Journal of the Minerals Metals & Materials Society, 2016, vol. 68, iss. 11, pp. 2854–2863. DOI: 10.1007/s11837-016-2075-y.


PDF      

Article reference

Brittle Fracture Resistance and Damping Properties of a Steel-Rubber Metal-Polymer Composite / S. V. Gladkovsky, P. D. Nedzvetsky, D. I. Vichuzhanin, S. V. Kuteneva, S. V. Lepikhin // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 2. - P. 6-18. -
DOI: 10.17804/2410-9908.2020.2.006-018. -
URL: http://eng.dream-journal.org/issues/2020-2/2020-2_289.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru