Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2020 Issue 1

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. I. Mironov, I. G. Emelyanov, D. I. Vichuzhanin, L. M. Zamaraev, D. A. Ogorelkov, V. V. Yakovlev

EFFECT OF HYDROGENATION TEMPERATURE AND TENSILE STRESS ON THE PARAMETERS OF THE COMPLETE DEFORMATION DIAGRAM FOR STEEL 09G2S

DOI: 10.17804/2410-9908.2020.1.024-033

Hydrogen concentration in the sample material depends on its environmental content, external pressure, temperature, surface condition, and testing time. All other things being equal, increasing temperature increases the diffusion coefficient and, consequently, hydrogen concentration in the metal. This, in turn, changes the mechanical properties of the material. The paper considers the principal possibility of determining the parameters of this process within the method of complete deformation diagrams. By changing the parameters of the diagram of the hydrogenated metal, a conclusion is made about the changes in its strength, plasticity, and crack resistance. The approach is illustrated by the results of testing samples of the structural 09Г2С steel, widely used in mechanical engineering. It has been found that the increasing temperature of hydrogenation reduces the strength and ductility of the steel and increases crack resistance. Thus, it is experimentally proved that the parameters of the falling branch of the complete diagram are sensitive to hydrogen concentration in the steel. The changes in the mechanical properties of the structural steel caused by the action of hydrogen are qualitatively similar to those caused by cyclic loading. In this regard, it is concluded that degradation processes of different natures can be studied on a common methodological basis. The parameters of the falling branch of the complete deformation diagram can serve as the representative parameters of these processes.

Keywords: hydrogen, diffusion, experiment, complete deformation diagrams

References:

1.  Bolotin V.V. Resurs mashin i konstruktsiy [Resource of Machines and Structures]. Moscow, Mashinostroenie Publ., 1990, 448 p. (In Russian).

2.  Plyutov Yu.A., Homich L.V. New approaches to analyzing the reliability of vehicles. Fundamentalnye Issledovaniya, 2004, no. 6, pp. 70–72. (In Russian).

3.  Emel'yanov I.G, Mironov V.I. Dolgovechnost obolochechnykh konstruktsiy [Durability of Shell Structures]. Ekaterinburg, RIO UrO RAN Publ., 2012, 217p. ISBN 978-5-7691-2322-1. (In Russian).

4.  Yakovleva T.Yu. Lokalnaya plasticheskaya deformatsiya i ustalost metalla [Local Plastic Deformation and Fatigue of Metals]. Kiev, Naukova Dumka Publ., 2003, 238 p. (In Russian).

5.  Moroz L.S., Chechulin B.B. Vodorodnaya khrupkost metallov [Hydrogen Brittleness of Metals]. Moscow, Metallurgy Publ., 1967, 256 p. (In Russian).

6.  Suzuki H., Fukushima H., Takai K. Role of Hydrides and Solute Hydrogen in Embrittlement of Pure Titanium. Journal of the Japan Institute of Metals, 2015, vol. 79, pp. 82–88. DOI: 10.2320/jinstmet.JC201402.

7.  Tal-Gutelmacher E., Eliezer D. Hydrogen-Assisted Degradation of Titanium Based Alloys. Materials Transactions, 2004, vol. 45, iss. 5, pp. 1594–1600. DOI: 10.2320/matertrans.45.1594.

8.  Venezuela J., Blanch J., Zulkiply A., Liu Q., Zhou Q., Zhang M., Atrens A. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corrosion Science, 2018, vol. 135, pp. 120–135. DOI: 10.1016/j.corsci.2018.02.037.

9.  Garetta G., Cioffi P., Bruschi R. Engineering thoughts on Hydrogen Embrittlement. Procedia Structural Integrity, 2018, vol. 9, pp. 250–256. DOI: 10.1016/j.prostr.2018.06.038.

10. Lynch S. Hydrogen embrittlement phenomena and mechanisms. Corrosion Reviews, 2012, vol. 30 (3–4), pp. 105– 123. DOI: 10.1515/corrrev-2012-0502.

11. Van den Eeckhout E., Laureys A., Van Ingelgem Y., Verbeken K. Hydrogen permeation through deformed and heat-treated Armco pure iron. Materials Science and Technology, 2017, vol. 33, iss. 13, pp. 1515–1523. DOI: 10.1080/02670836.2017.1342015.

12. Andronov D.Yu., Arseniev D.G., Polyanskiy A.M., Polyanskiy V.A., Yakovlev Yu.A. Application of multichannel diffusion model to analysis of hydrogen measurements in solid. International Journal of Hydrogen Energy, 2017, vol. 42, iss 1, pp. 699–710. DOI: 10.1016/j.ijhydene.2016.10.126.

13. Terent'ev V.F. Ustalostnaya prochnost' metallov i splavov [Fatigue Strength of Metals and Alloys]. Moscow, Intermet Inzhiniring Publ., 2002, 288 p. (In Russian).

14. Lahdari A.A., Seddak A., Ovchinnikov I.I., Ovchinnikov I.G. Modeling of hydrogen embrittlement of a pipeline as a thin-walled cylindrical shell of a nonlinearly elastic material. Internet-zhurnal «NAUKOVEDENIE», 2017, vol. 9, no. 4. Available at: http://naukovedenie.ru/PDF/58TVN417.pdf

15. Ustalost i vynoslivost metallov [Fatigue and Endurance of Metals, ed. by G.V. Uzhik]. Moscow, Izd-vo inostrannoy literatury Publ., 1963, 497 p. (In Russian).

16. Christmann К. Interaction of hydrogen with solid surfaces. Surface Science Reports, 1988, vol. 9, iss. 1–3, pp. 1–163. DOI: 10.1016/0167-5729(88)90009-X.

17. Mironov V.I., Emel'yanov I.G., Yakushev A.V., Lukashuk O.A. Development of rapid method for car steel quality control. Transport of the Ural, 2012, no. 2 (33), pp. 13–17. Available at: https://elibrary.ru/item.asp?id=17725311

18. Ovchinnikov I.I., Ovchinnikov I.G. Effect of hydrogen-containing environment at high temperature and pressure on the behavior of metals and structures. Internet-zhurnal «NAUKOVEDENIE», 2012, no. 4. Available at: https://naukovedenie.ru/PDF/60tvn412.pdf (accessed 20.09.2017).

19. Rebyakov Yu.N., Chemiavsky A.O., Chemiavsky O.F. Deformation and destruction of materials and structures in the diffusion. Vestnik YuUrGU, 2010, no. 10, pp. 4–16.

20. Lebedev A.A., Chausov N.G. Phenomenological fundamentals of the evaluation of crack resistance of materials on the basis of parameters of falling portions of strain diagrams. Problems of Strength, 1983, vol. 15, iss. 2, pp 155–160. DOI: 10.1007/BF01523460.

21. Smirnov S.V., Zamaraev L.M., Zamyatin A.N., Matafonov P.P. Short-term thermal cyclic creep and fracture of a VT1-0 titanium alloy in a hydrogen atmosphere. Russian Metallurgy (Metally), 2012, iss. 3, pp. 255–257. DOI: 10.1134/S0036029512030123.

22. Smirnov S.V., Zamaraev L.M. Energy of activation of the VT5 and VT1-0 titanium alloys under short-term creep in air and argon. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 6, pp. 100–110. DOI: 10.17804/2410-9908.2016.6.100-110. Available at: http://dream-journal.org/DREAM_Issue_6_2016_Smirnov_S.V._et_al._100_110.pdf

23. Velichko V.V., Mikheev G.M., Zabil'skij V.V., Maleev D.I. The influence of superlow concentration hydrogen on the mechanical properties of quenched 30KhG3A steel. Fiziko-Khimicheskaya Mekhanika Materialov, 1991, no. 1, pp. 112–114.

24. Kartashov A.M. Vliyanie vodorodnogo vozdeystviya pri vysokoy temperature i davlenii na uprugie svoystva uglerodistoy stali [Effect of Hydrogen on the Elastic Properties of Carbon Steel at High Temperature and Pressure: Collection of Scientific Works of Graduate Students]. Leningrad, LITMO Publ., 1974, pp. 142–145. (In Russian).

25. Mironov V.I., Lukashuk O.A. Influence of Material Structural Inhomogeneity on Fracture Strength of Constructional Elements. Key Engineering Materials, 2017, vol. 735, pp. 89–112. DOI: 10.4028/www.scientific.net/KEM.735.89.


PDF      

Article reference

Effect of Hydrogenation Temperature and Tensile Stress on the Parameters of the Complete Deformation Diagram for Steel 09g2s / V. I. Mironov, I. G. Emelyanov, D. I. Vichuzhanin, L. M. Zamaraev, D. A. Ogorelkov, V. V. Yakovlev // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 1. - P. 24-33. -
DOI: 10.17804/2410-9908.2020.1.024-033. -
URL: http://eng.dream-journal.org/issues/2020-1/2020-1_279.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru