Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2019 Issue 4

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






V. V. Privalova, E. Yu. Prosviryakov


DOI: 10.17804/2410-9908.2019.4.044-055

An exact solution describing a convective unidirectional flow of a viscous incompressible fluid is obtained. The motion takes place in an infinite layer of some finite thickness. The fields of velocity, temperature, and pressure are time-independent. The resulting exact solution is a polynomial of various orders along the vertical (transverse) coordinate. A boundary value problem is formulated for the exact solution constructed. On the absolutely solid lower boundary of the fluid layer, the Navier slip condition and heating are specified. On the upper (free) surface, nonzero tangential stresses and pressure along the longitudinal coordinate are set. The temperature at the upper boundary is assumed to be zero. The obtained particular exact solution of the boundary value problem for the velocity function is analyzed. It is shown that, in the fluid layer under consideration, the velocity can have up to two stagnation points, which indicates the occurrence of countercurrent zones. The nonzero component of the vorticity vector and the tangential stress are analyzed. It is shown that the vorticity vector can change its sign in the fluid layer up to two times and that the tangential stress can change from tensile to compressive as many times.

Keywords: exact solution, counterflow, stagnation point, Navier slip condition, vorticity vector


  1. Roache P. J. Computational fluid dynamics, Hermosa Publs, Albuquerque, 1976, 446 p.

  2. Fletcher C. A. J. Computational Techniques for Fluid Dynamics. Springer-Verlag Berlin Heidelberg, 1988. DOI: 10.1007/978-3-642-97035-1.

  3. Samarskii A.A. The Theory of Difference Schemes, Marcel Dekker Inc., New York, 2001, 786 p. DOI: 10.1201/9780203908518.

  4. Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642‒662. DOI: 10.1134/S0040579509050066.
  5. Lin C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Rational Mech. Anal., 1957, vol. 1, pp. 391‒395. DOI: 10.1007/BF00298016.
  6. Aristov S.N., Shvarts K.G. Vikhrevye techeniya advektivnoy prirody vo vrashchayushchemsya sloe zhidkosti [Advective Eddy Flows in a Rotating Liquid Layer]. Perm, Permskiy Un-t Publ., 2006, 155 p. (In Russian).
  7. Aristov S.N., Prosviryakov E.Yu. On laminar flows of planar free convection. Russian Journal of Nonlinear Dynamics, 2013, vol. 9, no. 4, pp. 651‒657.
  8. Aristov S.N., Prosviryakov E.Yu. A new class of exact solutions for three-dimensional thermal diffusion equations. Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286‒293. DOI: 10.1134/S0040579516030027.
  9. Poiseuille J. Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres. Comptes rendus hebdomadaires des séances de l'Acadmemie des Sciences, 1840, vol. 11, pp. 961 ‒ 967. pp. 1041 ‒ 1048.
  10. Poiseuille J. Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres (suite). Comptes rendus hebdomadaires des séances de l'Acadmemie des Sciences, 1841, vol. 12, pp. 112 ‒ 115.
  11. Aristov S.N., Knyazev D.V. New exact solution of the problem of rotationally symmetric Couette-Poiseuille flow. J. Appl. Mech. Tech. Phys., 2007, vol. 48, no. 5, pp. 680‒685. DOI: 10.1007/s10808-007-0087-7.
  12. Regirer S. A. On the movement of fluid in a tube with a deforming wall. Izv. AN SSSR. Mechanika zhidkosti i gaza, 1968, no. 4, pp. 202–204.
  13. Regirer, S.A. Quasi-one-dimensional theory of peristaltic flows. Fluid Dyn., 1984, vol. 19, no. 5, pp. 747–754. DOI: 10.1007/BF01093542.
  14. Takagi D., Balmforth N. J. Peristaltic pumping of rigid objects in an elastic tube. J. Fluid Mech., 2011, vol. 672, pp. 219–244. DOI: 10.1017/S0022112010005926.
  15. Yin F. C. P., Fung Y. C. Peristaltic waves in circular cylindrical tubes. Trans. ASME. J. Appl. Mech., 1969, vol. 36, pp. 579–587.
  16. Pedley T. The Fluid Mechanics of Large Blood Vessels (Cambridge Monographs on Mechanics), Cambridge University Press, Cambridge, 1980. DOI: 10.1017/CBO9780511896996.
  17. Medvedev A.E. Three-dimensional motion of a viscous incompressible fluid in a narrow tube. J. Appl. Mech. Tech. Phys.,. 2009, vol. 50, no. 4, pp. 566–569. DOI: 10.1007/s10808-009-0076-0.
  18. Medvedev A.E. Unsteady motion of a viscous incompressible fluid in a tube with a deformable wall. J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 4, pp. 552–560. DOI: 10.1134/S0021894413040056.
  19. Tverier V.M., Gladysheva O.S. A biomechanical model of the mammary gland. Master's Journal, 2013, no. 2, pp. 240–252. (In Russian).
  20. Gavrilenko S.L., Vasin R.A., and Shilko S.V. A method for determining flow and rheological constants of viscoplastic biomaterials. Part 1. Russian Journal of Biomechanics, 2002, vol. 6, no. 3, pp. 92–99. (In Russian).
  21. Shil’ko, S. V., Gavrilenko, S. L., Khizhenok, V. F., Stakan, I. N., and Salivonchik, S.P., A method for defining flow and rheological constants of viscoplastic biomaterials. Part 2. Russian Journal of Biomechanics, 2003, vol. 7, no. 2, pp. 79–84. (In Russian).
  22. Goldstein S. Modern Developments in Fluid Mechanics, Oxford Univ. Press, Oxford, 1938.
  23. Neto C., Evans D., Bonaccurso E. Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 2005, vol. 39, pp. 2859‒2897. DOI: 10.1088/0034-4885/68/12/R05
  24. Yankov V.I., Boyarchenko V.I., Pervadchuk V.P., Glot I.O., Shakirov N.V. Pererabotka voloknoobrazuyushchikh polimerov. Osnovy reologii polimerov i techeniye polimerov v kanalakh [Processing of fiber-forming polymers. Bases of polymer rheology and polymer flow in channels]. Moscow-Izhevsk, RKhD Publ., 2008, 264 p. (In Russian).
  25. Vinogradova O. I., Belyaev A. V. Wetting, roughness and flow boundary conditions. J. Phys. Condens. Matter, 2011, vol. 23, pp. 184104 (1–15).
  26. Belyaev A. V., Vinogradova O. I. Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech., 2010, vol. 652, pp. 489–499. DOI: 10.1017/S0022112010000741.
  27. Borzenko E.I., Diakova O.A., Shrager G.R. Studying the slip phenomenon for a viscous fluid flow in a curved channel. Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 2 (28), pp. 35‒44. (In Russian).
  28. Itoh S., Tanaka N., Tani A. The initial value problem for the Navier-Stokes equations with general slip boundary conditions in Holder spaces. J. Math, Fluid Mech., 2003, vol. 5, pp. 275‒301. DOI: 10.1007/s00021-003-0074-6.
  29. Beirao da Veiga Н. Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Advances in Differential Equations, 2004, vol. 9, nos. 9‒10, pp. 1079‒1114.
  30. H. Fugita. Non-stationary Stokes flows under leak boundary conditions of friction type. J. Comput. Math., 2001, vol. 19, no. 1, pp. 1‒ 8.
  31. Gershuni G. Z., Zhukhovitskii E. M. Convective Stability of Incompressible Fluids. Israel Program for Scientific Translations.  Jerusalem: Keter Publishing House, 1976. 330 pp.
  32. Burmasheva N.V., Prosviryakov E.Yu. A large-scale layered stationary convection of an incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation. Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2017, vol. 21, no. 1, pp. 180–196. DOI: 10.14498/vsgtu1527. (In Russian).
  33.  Privalova V.V., Prosviryakov E.Yu., Couette–Hiemenz Exact Solutions for the Steady Creeping Convective Flow of a Viscous Incompressible Fluid, with Allowance Made for Heat Recovery. J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2018, vol. 22, no. 3, pp. 1–17. DOI: 10.14498/vsgtu1638
  34. Privalova V. V., Prosviryakov E. Yu. Exact solutions for the convective creep Couette-Hiemenz flow with the linear temperature distribution on the upper border. Diagnostics, Resource and Mechanics of materials and structures, 2018, iss. 2, pp. 92–109. DOI: 10.17804/2410-9908.2018.2.092-109.
  35. Aristov S.N., Prosviryakov E.Yu. Unsteady layered vortical fluid flows. Fluid Dynamics, 2016, vol. 51, no. 2, pp. 148–154. DOI: 10.1134/S0040579516030027.
  36. Navier С.L.M.H. M'emoire sur les Lois du Mouvement des Fluides. M'em. Acad. Sci. Inst. de France, 1822, vol. 2, no. 6, pp. 389–440.
  37. Navier C.L.M.H. Sur les lois du mouvement des fluids. M'em. Acad. R. Sci. Inst., 1827, fr. 6, pp. 389–440.


Article reference

Privalova V. V., Prosviryakov E. Yu. The Effect of Tangential Boundary Stresses on the Convective Unidirectional Flow of a Viscous Fluid Layer under the Lower Boundary Heating Condition // Diagnostics, Resource and Mechanics of materials and structures. - 2019. - Iss. 4. - P. 44-55. -
DOI: 10.17804/2410-9908.2019.4.044-055. -
URL: http://eng.dream-journal.org/issues/2019-4/2019-4_262.html
(accessed: 05/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru