E. Z. Valiev, V. I. Bobrovskii
ON THE SEARCH OF NEW MAGNETIC MATERIALS FOR CRYOGENICS
DOI: 10.17804/2410-9908.2019.4.006-015 Due to the latest achievements and potential practical applicability, magnetic refrigeration is currently of great interest. For the search of new effective materials for refrigerators with magnetic cooling, we obtain and analyze the governing equations enabling one to calculate the basic characteristics of the magnetocaloric effect (MCE) in magnetically ordered materials (temperature and entropy changes under on/off switching of the magnetic field). Recommendations and demands for the characteristics of promising ferro- and ferrimagnets in search are proposed on the basis of a joint analysis of these formula and experimental results.
Acknowledgments: The work was performed with the use of IMP Neutron Material Science Complex within the state assignment for IPM UB RAS (theme Flux) and supported by the Basic Research Program of UB RAS, grant No. 18-10-2-22. Keywords: magnetic refrigeration, ferromagnets, antiferromagnets, ferrimagnets, magnetic phase transitions, magnetocaloric effect References: 1. Franco V., Blázquez J.S., Ipus J.J., Law J.Y., Moreno-Ramírez L.M., Conde A. Magnetocaloric effect: From materials research to refrigeration device. Progress in Materials Science, 2018, vol. 93, pp. 112–232. DOI: 10.1016/j.pmatsci.2017.10.005.
2. Zimm C., Jastrab A., Sternberg A., Pecharsky V., Gschneidner K., Osborne M., Anderson I. Description and performance of a near-room temperature magnetic refrigerator. In: Kittel P., ed. Advances in Cryogenic Engineering Book Series (ACRE, vol. 43), Springer, Boston, MA, 1998, pp. 1759–1766. DOI: 10.1007/978-1-4757-9047-4_222. Online ISBN: 978-1-4757-9047-4.
3. Bean C.P., Rotbell D.C. Magnetic disorder as first-order phase transition. Phys. Rev., 1962, vol. 126, pp. 104–115. DOI: 10.1103/PhysRev.126.104.
4. Kittel C. Model of exchange-inversion magnetization. Phys. Rev., 1960, vol. 120, pp. 335–342. DOI: 10.1103/PhysRev.120.335.
5. Valiev E.Z., Kazantsev V. A. Magnetocaloric effect in La(FexSi1−x)13 ferromagnets. Physics of Metals and Metallography, 2011, vol. 113, no. 6, pp. 1000–1005. DOI: 10.1134/S1063776111150118.
6. Valiev E.Z. Isotropic Magnetoelastic Interaction in Two-Sublattice Ferri- and Antiferromagnets: Mean-Field Approximation for the Heisenberg Model. Physics of Metals and Metallography, 2003, vol. 96, no. 2, pp.121–127.
7. Valiev E.Z. Entropy and Magnetocaloric Effect in Ferrimagnets RCo2. Physics of Metals and Metallography, 2017, vol. 124, no. 6, pp. 968–974. DOI: 10.1134/S1063776117060048.
8. Valiev E., Gimaev R., Zverev V., Kamilov K., Pyatakov A., Kovalev B., Tishin A. Application of the exchange-striction model for the calculation of the FeRh alloys magnetic properties. Intermetallics, 2019, vol. 108, pp. 81–86. DOI: 10.1016/j.intermet.2019.02.015.
9. Valiev E.Z. Entropy and Magnetocaloric Effect in Ferromagnets and Antiferromagnets. Physics of Metals and Metallography, 2007, vol. 104, no. 1, pp. 8–12. DOI: 10.1134/S0031918X07070022.
10. Valiev E.Z. Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions. JETP, 2009, vol. 108, no. 2, pp. 279–285. DOI: 10.1134/S1063776109020101.
11. Fujita A., Akamatsu Y., Fukamishi K. Itinerant-electron metamagnetic transition in La(FexSi1-x)13 intermetallic compounds. J. Appl. Phys., 1999, vol. 85, pp. 4756–4758. DOI: 10.1063/1.370471.
12. Fujita A., Fujieda S., Hasegava Y., Fukamishi K. Itinerant-electron metamagnetic transition and large magnetocaloric effect in La(FexSi1-x)13 compounds and their hydrides. Phys. Rev. B, 2003, vol. 67, no 10, pp. 104416. DOI:10.1103/PhysRevB.67.104416.
Article reference
Valiev E. Z., Bobrovskii V. I. On the Search of New Magnetic Materials for Cryogenics // Diagnostics, Resource and Mechanics of materials and structures. -
2019. - Iss. 4. - P. 6-15. - DOI: 10.17804/2410-9908.2019.4.006-015. -
URL: http://eng.dream-journal.org/issues/2019-4/2019-4_261.html (accessed: 11/21/2024).
|