A. V. Stolbovsky, V. V. Popov, E. N. Popova, S. A. Murzinova
SPECIFIC FEATURES OF THE GRAIN STRUCTURE IN Ni-Cu ALLOYS AT THE SATURATION STAGE UNDER HIGH-PRESSURE TORSION
DOI: 10.17804/2410-9908.2019.4.026-037 Effect of doping in the Ni-Cu system on the structure formed under room-temperature high-pressure torsion is studied, and the statistical analysis of the grain structure under steady-state deformation (saturation stage) is done. It is demonstrated that in all the alloys considered (with 10, 34, and 90 at. % of Cu) there are two groups of crystallites, in one of which a pronounced effect of relaxation processes is observed, whereas in the other one they are not revealed. The ratio of the volume fractions of these groups depends on the alloy composition and, correspondingly, on its melting temperature. It is shown that the final average grain size is formed under the effect of dominating crystallite group depending on the alloy melting temperature. The non-linearity in the crystallite sizes and volume fractions of the crystallite groups dependently on the alloy composition is observed, indicating the noticeable effect of stacking-fault energy on the structure forming under the deformation.
Acknowledgments: The work was performed within the state assignment on the theme Function, No. g/r AAAA-A19-119012990095-0 and supported by the Basic Research Program of UB RAS, project No. 18-10-2-37. Keywords: copper, Ni-Cu alloys, stacking-fault energy, high-pressure torsion, submicrocrystalline structure, statistical analysis References: 1. Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater., 2000, vol. 48, no. 1, pp. 1–29. DOI: 10.1016/S1359–6454(99)00285–2.
2. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: Fundamentals and applications, TMS, Wiley, Hoboken, New Jersey, USA, 2013, 440 p. DOI: 10.1002/9781118742679.
3. Pippan R., Scheriau S., Hohenwarter A., Hafok M. Advantages and limitations of HPT: a review. Mater. Sci. Forum, 2008, vol. 584–586, pp. 16–21. DOI: 10.4028/www.scientific.net/MSF.584–586.16.
4. Korznikov A.V., Tyumentsev A.N., Ditenberg I.A. On the limiting minimum size of grains formed in metallic materials produced by high–pressure torsion. Phys. Met. Metallogr., 2008, vol. 106, no. 4, pp. 418–423. DOI: 10.4028/www.scientific.net/MSF.584–586.16.
5. Pippan R., Scheriau S., Taylor A., Hafok M., Hohenwarter A., Bachmaier A. Saturation of fragmentation during severe plastic deformation. Ann. Rev. Mater. Res., 2010, vol. 40, no. 1, pp. 319–343. DOI: 10.1146/annurev–matsci–070909–104445.
6. Zhao Y.H., Liao X.Z., Zhu Y.T., Horita Z., Langdon T.G. Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 188–193. DOI: 10.1016/j.msea.2005.08.074.
7. Hebesberger T., Stuwe H.P., Vorhauer A., Wetscher F., Pippan R. Structure of Cu deformed by high pressure torsion. Acta Mater., 2005, vol. 53, pp. 393–402. DOI: 10.1016/j.actamat.2004.09.043.
8. Kon'kova T.N., Mironov S.Y., Korznikov A.V. Severe cryogenic deformation of copper. Phys. Met. Metallogr., 2010, vol. 109, no. 2, pp. 171–176. DOI: 10.1134/S0031918X1002009.
9. Stolbovsky A.V., Popov V.V., Popova E.N., Pilyugin V.P. Structure, thermal stability, and state of grain boundaries of copper subjected to high–pressure torsion at cryogenic temperatures. Bulletin of the Russian Academy of Sciences: Physics, 2014, vol. 78, pp. 908–916. DOI: 10.3103/S1062873814090299.
10. Popov V.V., Popova E.N., Kuznetsov D.D., Stolbovskii A.V., Pilyugin V.P. Thermal Stability of Nickel Structure Obtained by High Pressure Torsion in Liquid Nitrogen. Physics of Metals and Metallography, 2014, vol. 115, pp. 682–691. DOI: 10.1134/S0031918X14070060.
11. Pilyugin V.P., Gapontseva T.M., Chashchukhina T.I., Voronova L.M., Shchinova L.I., Degtyarev M.V. Evolution of the structure and hardness of nickel upon cold and low–temperature deformation under pressure. The Physics of Metals and Metallography, 2008, vol. 105, no. 4, pp. 409–419. DOI: 10.1134/S0031918X08040157.
12. Zhang H.W., Huang X., Pippan R., Hansen N. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra–high strain by high pressure torsion. Acta Mater., 2010, vol. 58, pp. 1698–1707. DOI: 10.1016/j.actamat.2009.11.012.
13. Zhang H.W., Lu K., Pippan R., Huang X., Hansen N. Enhancement of strength and stability of nanostructured Ni by small amounts of solutes. Scripta Mater., 2011, vol. 65, pp. 481–484. DOI: 10.1016/j.scriptamat.2011.06.003.
14. Popov V.V., Stolbovsky A.V., Popova E.N., Pilyugin V.P. Structure and thermal stability of Cu after severe plastic deformation. Def. Diff. Forum, 2010, vol. 297–301, pp. 1312–1321. DOI: 10.4028/www.scientific.net/DDF.297–301.1312.
15. Edalati K., Fujioka T., Horita Z. Microstructure and mechanical properties of pure Cu processed by high–pressure torsion. Mater. Sci. Eng. A, 2008, vol. 497, pp. 168–173. DOI: 10.1016/j.msea.2008.06.039.
16. Zhao Y.H., Zhu Y.T., Liao X.Z., Horita Z., Langdon T.G. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Let., 2006, vol. 89, no. 1, pp. 121906. DOI: 10.1063/1.2356310.
17. Zhu Y.T., Huang J.Y., Gubicza J., Ungar T., Wang Y.M., Ma E., Valiev R.Z. Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res., 2003, vol. 18, pp. 1908–1917. DOI: 10.1557/JMR.2003.0267.
18. Dobatkin S.V., Bastarache E.N., Sakai G., Fujita T., Horita Z., Langdon T.G. Grain refinement and superplastic flow in an aluminum alloy processed by high–pressure torsion. Mater. Sci. Eng. A, 2005, vol. 408, pp. 141–146. DOI: 10.1016/j.msea.2005.07.023.
19. Qu S., An X.H., Yang H.J., Huang C.X., Yang G., Zang Q.S., Wang Z.G., Wu S.D., Zhang Z.F. Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater., 2009, vol. 57, no. 5, pp. 1586–1601. DOI: 10.1016/j.actamat.2008.12.002.
20. Valiev R.Z., Gertsman V.Y., Kaibyshev O.A. Grain boundary structure and properties under external influences. Phys. Stat. Sol., 1986, vol. 97, no. 1, pp. 11–56. DOI: 10.1002/pssa.2210970102.
21. Horita Z., Smith D.J., Furukawa M., Nemoto M. An investigation of grain boundaries in submicrometer–grained Al–Mg solid solution alloys using high–resolution electron microscopy. J. Mater. Research, 1996, vol. 11, no. 8, pp. 1880–1890. DOI: 10.1557/JMR.1996.0239.
22. Popov V.V. Mössbauer investigations of grain–boundary diffusion and segregation. Def. Diff. Forum, 2007, vol. 263, pp. 69–74. DOI: 10.4028/www.scientific.net/DDF.258–260.497.
23. Sauvage X., Wilde G., Divinski S.V., Horita Z., Valiev R.Z. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A, 2012, vol. 540, pp. 1–12. DOI: 10.1016/j.msea.2012.01.080.
24. Popov V.V. Mossbauer Spectroscopy of Interfaces in Metals. Phys. Met. Metallogr., 2012, vol. 113, no. 13, pp. 1257–1289. DOI: 10.1134/S0031918X12130029.
25. Popov V.V., Sergeev A.V., Stolbovsky A.V. Emission Mössbauer spectroscopy of grain boundaries in ultrafine–grained W and Mo produced by severe plastic deformation. Physics of Metals and Metallography, 2017, vol. 118, pp. 354–361. DOI: 10.1134/S0031918X17040081.
26. Stolbovsky A., Farafontova E. Statistical analysis method of the grain structure of nanostructured single phase metal materials processed by high–pressure torsion. Sol. Stat. Phenomena, 2018, vol. 284, pp. 425–430. DOI: 10.4028/www.scientific.net/SSP.284.425.
27. Stolbovsky A., Farafontova E. Statistical analysis of histograms of grain size distribution in nanostructured materials processed by severe plastic deformation. Sol. Stat. Phenomena, 2018, vol. 284, pp. 431–435. DOI: 10.4028/www.scientific.net/SSP.284.431.
28. Popov V.V., Stolbovsky A.V., Popova E.N. Structure of nickel–copper alloys subjected to high–pressure torsion to saturation stage. Phys. Met. Metallogr., 2017, vol. 118, pp. 1073–1080. DOI: 10.1134/S0031918X17110114.
29. Emeis F., Peterlechner M., Divinski S.V., Wilde G. Grain boundary engineering parameters for ultrafine grained microstructures: Proof of principles by a systematic composition variation in the Cu–Ni system. Acta Mater., 2018, vol. 50, pp. 262–272. DOI: 10.1016/j.actamat.2018.02.054.
30. Valiev R.Z., Rauch E.F., Baudelet B., Ivanishenko Yu.V. Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation. Acta Mater., 1996, vol. 44, no. 12, pp. 4705–4712. DOI: 10.1016/S1359–6454(96)00156–5.
31. Horita Z., Smith D.J., Nemoto M., Valiev R.Z., Langdon T.G. Observations of grain boundary structure in submicrometer–grained Cu and Ni using high–resolution electron microscopy. J. Mater. Res., 1998, vol. 13, no. 2, pp. 446–450. DOI: 10.1557/JMR.1998.0057.
32. Zhilyaev A.P., Nurislamova G.V., Kim B.K., Baro M.D., Szpunar J.A., Langdon T.G. Experimental parameters influencing grain refinement and microstructural evolution during high–pressure torsion. Acta Mater., 2003, vol. 51, pp. 753–765. DOI: 10.1016/S1359–6454(02)00466–4.
33. Zhilyaev A.P., Ohishi K., Langdon T.G., McNelley T.R. Microstructural evolution in commercial purity aluminum during high–pressure torsion. Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 277–280. DOI: 10.1016/j.msea.2005.08.044.
Article reference
Specific Features of the Grain Structure in Ni-Cu Alloys at the Saturation Stage under High-Pressure Torsion / A. V. Stolbovsky, V. V. Popov, E. N. Popova, S. A. Murzinova // Diagnostics, Resource and Mechanics of materials and structures. -
2019. - Iss. 4. - P. 26-37. - DOI: 10.17804/2410-9908.2019.4.026-037. -
URL: http://eng.dream-journal.org/issues/2019-4/2019-4_253.html (accessed: 11/03/2024).
|