Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2019 Issue 3

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

E. Yu. Prosviryakov

A SUFFICIENT CONDITION FOR THE ABSENCE OF STRONG AND WEAK DISCONTINUITIES IN THE GAS FLOW IN FLAT CHANNELS

DOI: 10.17804/2410-9908.2019.3.025-040

The paper brings together all the assumptions about the properties of discontinuous flows
of an ideal (perfect) gas, both formulated in textbooks and not formulated in the available literature, but having actually been long and effectively used. In addition, some new assumptions are physically grounded and formulated for the plane steady-state flow. All these properties are formulated in the form of a continuous continuum hypothesis for plane stationary flows of an ideal (perfect) gas. The hypothesis is formulated in such a way that, to justify the calculations and reasoning in the solution of problems, it would be possible not to resort to physical considerations every time again, but to rely on the “ready” statements of the hypothesis. Using the statements of this hypothesis,
a sufficient condition for the impossibility of the existence of discontinuities in the flows occurring in flat channels is obtained. In the derivation of sufficient conditions, were use only the statements of the hypothesis, without involving any additional physical considerations.

Acknowledgments: We are grateful to Prof. A. L. Stasenko (TsAGI) and Dr. G. B. Sizykh (MIPT) for the discus-sion of the “hypothesis” and useful remarks.

Keywords: continuous continuum, perfect gas, discontinuous gas flows, smoothness of flow parameters

References:

1. Loitsyanskii L.G. Mechanics of Liquids and Gases, Pergamon Press, 1966.

2. Bers L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd, London, 1958.

3. Kochin N.K., Kibel I.A., Roze N.V. Theoretical Hydromechanics, Wiley Interscience, 1964.

4. Batchelor G.K. An Introduction to Fluid Dynamics, University Press, Cambridge, 1970. DOI: 10.1017/CBO9780511800955.

5. Sedov L.I. Mechanics of Continuous Media, World Sci., River Edge, NJ, 1997.

6. Nikol'skii A.A., Taganov G.I. The motion of a gas in a local supersonic zone and some conditions for the breakdown of potential flow. Prikl. Mat. Mekh., 1946, vol. 10, no. 4.

7. Hopf E. Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom Elliptischen Typus. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1927, vol. 19, pp. 147–152.

8. Miranda C. Partial Differential Equations of Elliptic Type, Springer-Verlag Berlin Heidelberg, 1970.

9. Gilbarg D., Shiffman M. On bodies achieving extreme values of the critical Mach number I. J. Rat. Mech. and Analysis, 1954, vol. 3, iss. 2, pp. 209–230.

10. Kraiko A.N. Planar and axially symmetric configurations which are circumvented with the maximum critical mach number. Journal of Applied Mathematics and Mechanics, 1987, vol. 51, iss. 6, pp. 723–730. DOI: 10.1016/0021-8928(87)90131-6.

11. Rosenhead L. The formation of vortices from a surface of discontinuity. P. Roy. Soc. Lond., 1931, A134, pp. 170–192.

12. Belotserkovsky S.M., Nisht M.I. Otryvnoe i bezotryvnoe obtekanie tonkikh krylyev idealnoy zhidkostyu [Separated and Separationless Ideal-Fluid Flows past Thin Wings]. Moscow, Nauka Publ., 1978, 352 p. (In Russian).

13.Cottet G.-H., Koumoutsakos P. Vortex Methods: Theory and Practice, Cambridge University Press, 2000.

14. Gutnikov V.A., Lifanov I.K., Setukha A.V. Simulation of the aerodynamics of buildings and structures by means of the closed vortex loop method. Fluid Dynamics, 2006, vol. 41, no. 4, pp. 555–567. DOI: 10.1007/s10697-006-0073-4.

15. Fihtengolts G.M. Kurs differentsialnogo i integralnogo ischisleniya [A Course in Differential and Integral Calculus, vol. 2]. Moscow, Fizmatlit Publ., 2001. (In Russian).

16. Munk M., Prim R. On the multiplicity of steady gas flows having the same streamline pattern. Proc. Nat. Acad. Sci. USA, 1947, vol. 33, pp. 137–141.

17. Sizykh G.B. The Criterion of the Presence of a Stagnation Point in a Plane Irrotational Flow of Inviscid Gas. Trudy MFTI, 2015, vol. 7 (2), 108–112. (In Russian).

18. Golubkin V.N., Sizykh G.B. Property of the extreme pressure values in plane subsonic flows. Trudy MFTI, 2016, vol. 8, no. 4, pp. 149–154. (In Russian).


PDF      

Article reference

Prosviryakov E. Yu. A Sufficient Condition for the Absence of Strong and Weak Discontinuities in the Gas Flow in Flat Channels // Diagnostics, Resource and Mechanics of materials and structures. - 2019. - Iss. 3. - P. 25-40. -
DOI: 10.17804/2410-9908.2019.3.025-040. -
URL: http://eng.dream-journal.org/issues/2019-3/2019-3_258.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru