A. P. Nosov, I. V. Gribov, N. A. Moskvina, A. V. Druzhinin, V. I. Osotov
THIN FILM FeGa-FeCoGa/Metglas/LGT STRUCTURES FOR MAGNETOELECTRIC MAGNETIC FIELD SENSORS
DOI: 10.17804/2410-9908.2018.6.117-125 The paper studies the influence of the composition of a graded magnetostrictive layer on the magnetoelectric effect in three-layered laminated structures of the type composite magnetostrictive ferromagnet / ferroelectric / composite magnetostrictive ferromagnet. A single crystal of La3Ga5.5Ta0.5O14 (lanthanum gallium tantalite) is used as the ferroelectric. The graded magnetostrictive layer consists of a Metglas-type amorphous ribbon with magnetostrictive Galfenol thin films of either Fe0.72Ga0.28 or Fe0.62Co0.19Ga0.19 compositions deposited on it by pulsed laser deposition. The dc and ac magnetic field dependences of the magnetoelectric effect are investigated in the frequency range from 20 Hz to 10 kHz. Magnetic noise is investigated at frequencies ranging between 0.5 and 14 Hz. It is shown experimentally that the deposition of the Fe0.62Co0.19Ga0.19 films increases the value of the magnetoelectric voltage coefficient and decreases magnetic noise. The results can be useful in the development of magnetoelectric sensors of dc and ac magnetic fields for
nondestructive testing at elevated temperatures.
Acknowledgment: The work was performed within the state assignment from the Ministry of Education of Russia (Spin, No. АААА-А18-118020290104-2). Keywords: nondestructive testing, magnetic field sensor, magnetoelectric effect, amorphous alloy, thin films, Galfenol, lanthanum gallium tantalate References: 1. Lawes G., Srinivasan G. Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D: Appl. Phys., 2011, vol. 44. pp. 243001. DOI: 10.1088/0022-3727/44/24/243001.
2. Petrov V.M., Srinivasan G. Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Phys. Rev. B, 2008, vol.78, pp. 84421. DOI: 10.1103/PhysRevB.78.184421.
3. Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett., 2010, vol. 96, pp. 192502. DOI: 10.1063/1.3428774.
4. Magnetic Alloy 2605SA1 (iron-based). Tech. Bulletin, ref: 2605SA106192009, Metglas Inc., Conway, SC, 2009.
5. Passamani E.C., Larica C., Moscon P.S., Zelis P.M., Sanchez F.H. Out-of-plane anisotropy and low field induced magnetic domain reorientation in Al/Metglas-2605S2/Al trilayer sensors. J. Appl. Phys., 2011, vol. 110, pp. 043906. DOI: 10.1063/1.3622339.
6. Gribov I.V., Osotov V.I., Nosov A.P., Petrov V.M., Sreenivasulu G., Srinivasan G. Magneto-electric effects in functionally stepped magnetic nanobilayers on ferroelectric substrates: Observation and theory on the influence of interlayer exchange coupling. Journal of Applied Physics, 2014, vol. 115, pp. 193909–193908. DOI: 10.1063/1.4878458.
7. More-Chevalier J., Lüders U., Cibert C., Nosov A., Domengès B., Bouregba R., Poullain G. Magnetoelectric coupling in Pb(Zr,Ti)O3–Galfenol thin film heterostructures. Applied Physics Letters, 2015, vol. 107, pp. 252903–252906. DOI: 10.1063/1.4938218.
8. Sreenivasulu G., Fetisov L.Y., Fetisov Y.K., Srinivasan G. Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Applied Physics Letters, 2012, vol. 100, pp. 052901. DOI: 10.1063/1.3679661.
9. Sreenivasulu G., Qu P., Piskulich E., Petrov V.M., Fetisov Y.K., Nosov A.P., Qu H., Srinivasan G. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys. Applied Physics Letters, 2014, vol. 105, pp. 32409–32408. DOI: 10.1063/1.4891536.
10. Available at: http://www.newpiezo.com/ru/langatate.html
11. Available at: http://www.gammamet.ru/ru/gm440a.htm
12. Atulasimha J., Flatau A.B. A review of magnetostrictive iron-gallium alloys. Smart Materials and Structures, 2011, vol. 20, pp. 043001. DOI: 10.1088/0964-1726/20/4/043001.
13. Jen S.U., Tsai T.L., Kuo P.C., Chi W.L., Cheng W.C. Magnetostrictive and structural properties of FeCoGa films. J. Appl. Phys., 2010, vol. 107, pp. 013914. DOI: 10.1063/1.3284962.
14. Available at: http://www.optosystems.ru/eng/index.php
15. Sreenivasulu G., Petrov V.M., Fetisov L.Y., Fetisov Y.K., Srinivasan G. Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Physical Review B, 2012, vol. 86, pp. 214405. DOI: 10.1103/PhysRevB.86.214405.
Article reference
Thin Film Fega-Fecoga/metglas/lgt Structures for Magnetoelectric Magnetic Field Sensors / A. P. Nosov, I. V. Gribov, N. A. Moskvina, A. V. Druzhinin, V. I. Osotov // Diagnostics, Resource and Mechanics of materials and structures. -
2018. - Iss. 6. - P. 117-125. - DOI: 10.17804/2410-9908.2018.6.117-125. -
URL: http://eng.dream-journal.org/issues/2018-6/2018-6_231.html (accessed: 12/21/2024).
|