А. V. Telegin, Yu. P. Sukhorukov
MAGNETOTRANSMISSION EFFECT IN MAGNETOSTRICTIVE CoFe2O4 FOR THE CASE OF THE VOIGT GEOMETRY
DOI: 10.17804/2410-9908.2018.6.149-156 Infrared absorption spectra are obtained for a ferrimagnetic single crystal of ferrite CoFe2O4. It is shown that an external magnetic field applied in the Voigt geometry leads to a noticeable change in the transparency of the single crystal possessing high magnetostriction – the magnetotransmission effect (up to 10% in a 2 kOe field). The direct correlation between magnetotransmission and magnetostriction in the ferrite was established at room temperature. The anisotropy of the magnetotransmission of natural infrared radiation in CoFe2O4 is studied for the first time.
Acknowledgment: The work was performed within the state assignment from FASO Russia (Spin, No. АААА-А18-118020290104-2, with a partial support from UB RAS (grant No. 18-10-2-3) and the RF Min-istry of Education (grant No. 14.Z50.31.0025). Keywords: magnetostriction, magnetotransmission, strain-magnetooptics, ferrite, straintronics, IR range References: 1. Bukharaev A.A., Zvezdin A.K., Pyatakov A.P., Fetisov Yu.K. Straintronics: a new trend in micro-, nanoelectronics and material science. Phys. Usp., 2018, vol. 61, iss. 12. DOI: 10.3367/UFNe.2018.01.038279. Available at: https://ufn.ru/en/articles/2018/12/b/
2. Roy K. Ultra-low-energy straintronics using multiferroic composites. Appl. Phys. Lett., 2013, vol. 103, pp. 173110-1–173110-5. DOI: 10.1063/1.4826688.
3. Ustinov A.B., Kolkov P.I., Nikitin A.A., Kalinikos B.A., Fetisov Y.K., Srinivasan G. Ferrite-ferroelectric phase shifters controlled by electric and magnetic fields. Technical Physics, 2011, vol. 56, no. 6, pp. 821–825. DOI: 10.1134/S1063784211060259.
4. Krupicka S. Physics of Ferrites, Akademie der Wissenschaften, Prag, Czechoslovakhia, 1973.
5. Sato-Turtelli R., Kriegisch M., Atif M., Grossinger R. Co-ferrite – A material with interesting magnetic properties. In: Materials Science and Engineering: IOP Conf. Series, 2013, vol. 60, pp. 012020. DOI: 10.1088/1757-899X/60/1/012020.
6. Ferre J., Gehring G.A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys., 1984, vol. 47, pp. 513–611. DOI: 10.1088/0034-4885/47/5/002.
7. Smolenskii G.A., Pisarev R.V., Sinii I.G. Birefringence of light in magnetically ordered crystals. Physics-Uspekhi, 1975, vol. 18, pp. 410–429. DOI: 10.1070/PU1975v018n06ABEH001964.
8. Gan'shina E.A., Zenkov A.V., Krinchik G.S., Moskvin A.S., Trifonov A.Yu. Quadratic magnetooptic effects in orthoferrites. JETP, 1991, vol. 72, no. 1, pp. 154–159.
9. Sukhorukov Yu.P., Telegin A.V., Bebenin N.G., Nosov A.P., Bessonov V.D., Buchkevich A.A., Patrakov E.I. Magnetotransmission and magnetostriction in ferrimagnetic spinels CoFe2O4. JETP, 2018, vol. 126, no. 1, pp. 106–114. DOI: 10.7868/S004445101801011X.
10. Sukhorukov Yu.P., Telegin A.V., Bebenin N.G., Nosov A.P., Bessonov V.D., Buchkevich A.A. Strain-magneto-optics of a magnetostrictive ferrimagnets CoFe2O4. Solid State Communication, 2017, vol. 263, pp. 27–30. DOI: 10.1016/j.ssc.2017.07.003.
11. Sukhorukov Yu.P., Bebenin N.G. Telegin A.V., Nosov A.P. Magnetooptical properties of ferro- and ferrimagnetic spinels. FMM, 2018, vol. 119, no. 12, pp. 1231–1238. (In Russian).
12. Holinsworth B.S., Mazumdar D., Sims H., Sun Q.-C., Yurtisigi M.K., Sarker S.K., Gupta A., Butler W.H., Musfeldt J.L. Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett., 2013, vol. 103, pp. 082406. DOI: 10.1063/1.4818315.
13. Sukhorukov Yu.P., Telegin A.V., Bebenin N.G., Buchkevich A.A., Nosov A.P., Bessonov V.D. Magnetotransmission in magnetostrictive crystal of CoFe2O4 in the Faraday geometry. JETP Letters, 2018, vol. 108, no. 1, pp. 48-53. DOI: 10.1134/S0021364018130131.
14. Rahman A., Gafur A., Sarker A.R. Impact of cobalt doping on structural, electronic and optical properties of cobalt ferrite prepared by solid-state teaction. Int. J. Innovative Research in Advanced Engineering, 2015, vol. 2, no. 1, pp. 99–107. DOI: 10.1016/j.rinp.2017.09.057.
15. Danil’kevich M.I., Litvinivich G.V., Naumenko V.I. IR reflection spectra and optical constants of cobalt ferrite–gallates. J. of Applied Spectroscopy, 1976, vol. 24, no. 1, pp. 38–43. DOI: 10.1007/BF01100715.
16. Bujakiewicz-Koronska R., Hetmanczyk L., Garbarz-Gios B., Budziak A., Kalvane A., Bormanis K., Druzbicki K. Low temperature measurements by infrared spectroscopy in CoFe2O4 ceramic. Cent. Eur. J. Phys., 2012, vol. 10, no. 5, pp. 1137–1143. DOI: 10.2478/s11534-012-0101-4.
17. Bozorth R.M., Tilden E.F., Wiliams A.J. Anisotropy and magnetostriction of some ferrites. Phys. Rev., 1955, vol. 99, no. 6, pp. 1788–1799. DOI: 10.1103/PhysRev.99.1788.
18. Kambale R.C., Song K.M., Won C.J., Lee K.D., Hur N. Magnetic and magnetostrictive behavior of Dy3+ doped CoFe2O4 single crystals grown by flux method. J. Crystal Growth, 2012, vol. 340, pp. 171–174. DOI: 10.1016/j.jcrysgro.2011.12.007.
Article reference
Telegin А. V., Sukhorukov Yu. P. Magnetotransmission Effect in Magnetostrictive Cofe2o4 for the Case of the Voigt Geometry // Diagnostics, Resource and Mechanics of materials and structures. -
2018. - Iss. 6. - P. 149-156. - DOI: 10.17804/2410-9908.2018.6.149-156. -
URL: http://eng.dream-journal.org/issues/2018-6/2018-6_228.html (accessed: 12/21/2024).
|