Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2018 Issue 6

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

I. A. Artemev, M. L. Krasnov, G. M. Rusakov, S. V. Danilov

DETERMINATION OF THERMAL EFFECTS OF DIFFUSIONLESS PHASE TRANSFORMATIONS IN LOW-CARBON LOW-ALLOY STEELS AT HIGH COOLING RATES

DOI: 10.17804/2410-9908.2018.6.173-183

We have designed an original laboratory bench allowing one to model technological rates of cooling of hot-rolled sheets in the process of controlled thermomechanical processing. The bench consists of a heating furnace with a mechanism for sample extraction and fixation, a temperature measurement unit comprising three pyrometers, an air-cooling unit with a pneumatic system, a unit for management and information recording. The sample cooling rate is controlled through sample thickness and pressure in the air cooling system. We use samples cut from an industrial sheet of the 06G2MB-type low-carbon low-alloy pipe steel, which is intended for production of large pipes of the X80 strength class. We have obtained time dependencies of sample temperatures at cooling rates ranging from 50 to 700 ℃/s. The heat effect of bainitic transformation is equal to 120 ± 5 kJ/kg, this being twice the thermal effect of martensitic transformation for low-carbon steels.

Acknowledgment: The study was performed on the equipment from the Ausferr JSC within the framework of the state assignment from the Federal Agency for Scientific Organizations of the Russian Federa-tion, theme Structure, registration number 0120146333. We express our gratitude for the assistance to the Program of Support Rendered to the Leading Universities of the Russian Federation in Order to Improve Their Competitiveness, No. 211, of the Government of the Russian Federation No. 02.А03.21.0006. We are also grateful to the MISW PJSC for their support and instrumentality in the organization of the research.

Keywords: thermal effect of phase transition, pipeline steel, controlled thermomechanical processing, cooling rate, martensitic transformation, bainitic transformation

References:

1. Sung H.K., Shin S.Y., Hwang B., Lee C.G., Kim N.J., Lee S. Effects of carbon equivalent and cooling rate on tensile and Charpy impact properties of high-strength bainitic steels. Materials Science and Engineering A, 2011, vol. 530, pp. 530–538. DOI: 10.1016/j.msea.2011.10.015.
2. Liang X.J., Hua M.J., Garcia C.I., Deardo A.J. The thermomechanical controlled processing of high-strength steel plate: A New View of toughness based on modern metallography. Materials Science Forum, 2013, vol. 762, pp. 38–46. DOI: 10.4028/www.scientific.net/MSF.762.38.
3. Goli-Oglu E.A., Éfron L.I., Morozov Yu.D. Effect of deformation regime in main stages of controlled rolling on pipe steel microstructure. Metal Science and Heat Treatment, 2013, vol. 55, pp. 294–297. DOI: 10.1007/s11041-013-9622-8.
4. Shigeru E., Naoki N. Development of Thermo-Mechanical Control Process (TMCP) and high performance steel in JFE Steel. JFE Technical Report, 2015, no. 20, pp. 1–7.
5. Lobanov M.L., Borodina M.D., Danilov S.V., Pyshmintsev I.Y., Struin A.O. Texture Inheritance on Phase Transition in Low-Carbon, Low-Alloy Pipe Steel after Thermomechanical Controlled Processing. Steel in Translation, 2017, vol. 47, pp. 710–716. DOI: 10.3103/S0967091217110055.
6. Pyshmintsev I.Y., Struin A.O., Gervasyev A.M., Lobanov M.L., Rusakov G.M., Danilov S.V., Arabey A.B. Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment. Metallurgist, 2016, vol. 60, pp. 405–412. DOI: 10.1007/s11015-016-0306-7.
7. Sabirov I., De Diego-Calderón I., Molina-Aldareguia J. M., Föjer C., Thiessen R., Petrov R.H. Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture properties. Materials Science and Engineering A, 2016, vol. 657, pp. 136–146. DOI: 10.1016/j.msea.2016.01.011.
8. Gong W., Tomota Y., Paradowska A.M., Kelleher J.F., Zhang S.Y. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel. Acta Materialia, 2013, vol. 61, pp. 4142–4154. DOI: 10.1016/j.actamat.2013.03.041.
9. Hulka K., Peters P., Haisterkamp F. Trends in the Development of Large-Diameter Pipe Steels. Steel in Translation, 1997, vol. 27, no. 10, pp. 64–70. (In Russian).
10. Lobanov M.L., Yurovskikh A.S., Kardonina N.I., Rusakov G.M. Metody issledovaniya tekstur v materialakh: uchebnoe posobie [Methods of Study of Textures in Materials]. Izd. Uralsk. Univ. Publ., Ekaterinburg, 2014, 115 p. (In Russian).
11. Lobanov M.L., Rusakov G.M., Redikul’tsev A.A., Belikov S.V., Karabanalov M.S., Struina E.R., Gervas’ev A.M. Investigation of Special Misorientations in Lath Martensite of Low-Carbon Steel Using the Method of Orientation Microscopy. The Physics of Metals and Metallography, 2016, vol. 117, pp. 254–259. DOI: 10.1134/S0031918X1603008X.
12. Lobanov M.L., Rusakov G.M., Urtsev V.N., Krasnov M.L., Mokshin E.D., Shmakov A.V., Platov S.I. Thermal effect of bainitic transformation in tube steels during accelerated cooling. Letters on Materials, 2018, vol. 8 (3), pp. 246–251. DOI: 10.22226/2410-3535-2018-3-246-251.
13. Ivanov D.A., Kuvayev N.V., Kuvayeva T.V. Calculation of the heat capacity of low-carbon low-alloy steel in modeling non-isothermal phase transformations. Teoriya i Praktika Metallurgii, 2010, no. 1–2, pp. 43–48. (In Russian).
14. Sufiyanova G. I., Spivak L. V. Fazovye prevrashcheniya nizkouglerodistykh martensitnykh stalyakh. In: Fizika dlya Permskogo kraya: Conference proceedings, Perm, 2016, Permskiy Gos. Nats. Issled. Un-t Publ., 2016, pp. 37–39. (In Russian).
15. Bhadeshia H.K.D.H. Martensite and bainite in steels: Transformation mechanism & mechanical properties. Journal De Physique IV : JP, 1997, vol. 7 (5), pp. C5-367–C5-376.
16. Gol’dshtein M.I., Popov V.V. Rastvorimost’ faz vnedreniya pri termicheskoi obrabotke stali [Solubility of Interstitial Phases in the Heat Treatment of Steel]. Moscow, Metallurgiya Publ., 1989 (In Russian).
 

   

PDF      

Article reference

Determination of Thermal Effects of Diffusionless Phase Transformations in Low-Carbon Low-Alloy Steels at High Cooling Rates / I. A. Artemev, M. L. Krasnov, G. M. Rusakov, S. V. Danilov // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 6. - P. 173-183. -
DOI: 10.17804/2410-9908.2018.6.173-183. -
URL: http://eng.dream-journal.org/issues/2018-6/2018-6_226.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru