Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2018 Issue 5

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

E. G. Valova-Zaharevskaya, I. L. Deryagina, E. N. Popova, N. E. Khlebova, V. I. Pantsyrny

SPECIAL CHARACTERISTICS OF THE MICROSTRUCTURE OF HIGH-STRENGTH MULTIFILAMENTARY Cu-18Nb COMPOSITES

DOI: 10.17804/2410-9908.2018.5.116-126

The paper presents refined data on the macroscopic and microscopic stresses according to X-ray diffraction analysis in multifilamentary Cu-18Nb composites fabricated by the melt-and-deform (in-situ) route, with a true strain e of 10.2 and 12.5. Under large plastic deformation by cold drawing, Nb dendrites in the Cu matrix acquire the shape of ribbons with the thickness decreasing to below 100 nm with increasing strain. The sharp fiber texture <110>Nb || <111>Cu || DA (deformation axis) develops in the composites, and its degree grows with increasing strain. The Nb crystal lattice is distorted due to the partially coherent character of the Cu/Nb interfaces, and these distortions also increase with strain. They are manifested in {110}Nb interplanar spacings extended in the longitudinal sections of the composites and compressed in the cross sections. In the Cu matrix lattice distortions are also observed, though they are much less pronounced, this being attributable to the dynamic recrystallization of copper and the weakening of its texture, even when in the composite.

Acknowledgments: The work was performed on the equipment of the collective use center of IPM UB RAS within the state assignment from FASO Russia (theme Pressure, No. АААА-А18-118020190104-3), with a partial support from UB RAS (project No. 18-10-2-24).

Keywords: high-strength composites, Cu-Nb, lattice parameters, X-ray diffraction analysis
   

PDF      

Article reference

Special Characteristics of the Microstructure of High-Strength Multifilamentary Cu-18nb Composites / E. G. Valova-Zaharevskaya, I. L. Deryagina, E. N. Popova, N. E. Khlebova, V. I. Pantsyrny // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 5. - P. 116-126. -
DOI: 10.17804/2410-9908.2018.5.116-126. -
URL: http://eng.dream-journal.org/issues/2018-5/2018-5_199.html
(accessed: 04/19/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru