Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2017 Issue 6

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






V. L. Arbuzov, V. I. Bobrovskii, S. E. Danilov, V. V. Sagaradze


DOI: 10.17804/2410-9908.2017.6.091-102

Understanding of the mechanisms of radiation-induced phenomena is of fundamental value both for design of new steels and for improvement of the properties of the existing ones. Along with the crystal structure and chemical composition of the matrix, doping admixtures and the material microstructure play important role in these phenomena. In this paper, the peculiarities of the microstructural state of chromium-nickel-molybdenum austenitic steels doped with titanium and phosphorus are studied by means of resistance measurements. The existence of the synergetic effects of simultaneous doping of steels with titanium and phosphorus has been confirmed. The effect of solid solution segregation as the annealing temperature reaches 700–800 K, accompanied by increasing electric resistivity, and has been found. The energies of the migration of interstitial atoms and of the dissociation of the “interstitial site – titanium atom” pair have been determined. The phenomena observed are in agreement with the results obtained for other austenitic steels.

Acknowledgments: The research was carried out at IMP Neutron Material Science Complex and supported by grant # 15-17-2-3 of the Program of Fundamental Researches of UB RAS.

Keywords: austenitic reactor steels, segregation, intermetallics, doping, electrical resistance


  1. Zeman A., Kaiser R., Inozemtsev V., Beatty R.L. IAEA activities on coordinated research of structural materials for advanced reactor systems. J. Nucl. Mater., 2012, vol. 428, pp. 3–5. DOI: 10.1016/j.jnucmat.2012.06.024
  2. Voyevodin V.N., Neklyudov I.M. Problems of radiation stability of structural materials for nuclear power industry. Visnyk Kharkivskogo Universitetu, ser. fiz., 2006, vol. 746, no. 4, pp. 3–22. (In Russian).
  3. Was G.S. Fundamentals of Radiation Materials Science. Metals and Alloys. New York, Springer Science+Business Media, 2007, 1002 p.
  4. Voronin V.I., Arbuzov V.L., Bobrovskii V.I., Danilov S.E., Kozlov K.A., Proskurnina N.V., Sagaradze V.V. Peculiarities of radiation-induced processes in the Cr-Ni-Mo austenitic steels studied by neutron diffraction. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 80–89. Available at: URL: http://dream-journal.org/issues/2015-5/2015-5_46.html (accessed 20.11.2017).
  5. Sagaradze V.V., Nalesnik V.M., Lapin S.S., Aliabev V.M. Precipitation hardening and radiation damageability of austenitic stainless steels. J. Nucl. Mater., 1993, vol. 202, pp.137–144. DOI: 10.1016/0022-3115(93)90036-X
  6. Okita T., Wolfer W.G., Garner F.A., Sekimura N. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling. Philosophical Magazine, 2005, vol. 85, no. 18, pp. 2033–2048. DOI: 10.1080/14786430412331331871
  7. Maziasz P.J. Formation and stability of radiation-induced phases in neutron irradiated austenitic and ferritic steels. J. Nucl. Mater., 1989, vol. 169, pp. 95–115. DOI: 10.1016/0022-3115(89)90525-4
  8. Kurishita H., Muroga T., Watanabe H., Yoshida N., Kayano H., Hamilton M.L. Effect of FFTF irradiation on tensile properties of P- and Ti-modified model austenitic alloys with small amounts of boron. J. Nucl. Mater., 1994, vol. 212, pp. 519–524. DOI: 10.1016/0022-3115(94)90115-5
  9. Shibahara I., Akasaka N., Onose S., Okada H., Ukai S. Swellling of advanced austenitic stainless steels developed for the environment of heavy neutron exposure. J. Nucl. Mater., 1994, vol. 212–215, pp. 487–491. DOI: 10.1016/0022-3115(94)90109-0
  10. Brailsford A.D., Mansur L.K. The effect of precipitate-matrix interface sinks on the growth of voids in the matrix. J. Nucl. Mater., 1981, vol. 104, pp. 1403–1408. DOI: 10.1016/0022-3115(82)90796-6
  11. Garner F.A., Wolfer W.G. The effect of solute additions on void nucleation. J. Nucl. Mater., 1981, vol. 102, pp. 143–150. DOI: 10.1016/0022-3115(81)90554-7
  12. Watanabe H., Aoki A., Murakami H., Muroga T., Yoshida N. Effects of phosphorus on defect behavior, solute segregation and void swelling in electron irradiated Fe-Cr-Ni alloys. J. Nucl. Mater., 1988, vol. 155–157, pp. 815–822. DOI: 10.1016/0022-3115(88)90422-9
  13. Watanabe H., Muroga T., Yoshida N. The temperature dependent role of phosphorus and titanium in microstructural evolution of Fe-Cr-Ni alloys irradiated in FFTF. J. Nucl. Mater., 1996, vol. 228, pp. 261–274. DOI: 10.1016/0022-3115(96)80004-3
  14. Arbuzov V.L., Danilov S.E. Effect of titanium doping on accumulation and annealing of radiation defects in austenitic steel 16Cr15Ni3Mo(0-1)Ti at low temperature (80 K) electron irradiation. In: IOP Conf., series: Materials Science and Engineering, 2016, vol. 110, pp. 0120331– 0120335. DOI: 10.1088/1757-899X/110/1/012033
  15. Danilov S.E., Arbuzov V.L., Kazantsev V.A. Radiation-induced separation of solid solution in Fe–Ni invar. J. Nucl. Mater., 2011, vol. 414, pp. 200–204. DOI: 10.1016/j.jnucmat.2011.03.013
  16. Alyab'yev V.M., Vologin V.G., Dubinin S.F., Lapin S.S., Parkhomenko V.D., Sagaradze V.V. Neutron diffraction and electron microscopic investigation of decomposition and radiationinduced ageing of Cr-Ni-Ti austenitic alloys. Physics of Metals and Metallography, 1990, vol. 70, no. 2, pp. 131–137.
  17. Arbuzov V.L., Shalnov K.V., Danilov S.E., Davletshin A.E., Pecherkina N.L., Sagaradze V.V. Observation of segregation deposits in iron-nickel-titanium alloy using scanning tunneling microscopy. Technical Physics Letters, 1999, vol. 25, no. 2, pp. 134–135. DOI: 10.1134/1.1262377
  18. Houdremont E. Handbuch der Sonderstahlkunde. Berlin-Gottingen-Heidelberg, SpringerVerlag, 1956, 1038 p.
  19. Arbuzov V.L., Danilov S.E., Kazantsev V.A., Sagaradze V.V. Radiation-induced strengthening of Al- and Ti-modified Fe-Ni alloys during electron irradiation. Physics of Metals and Metallography, 2011, vol. 115, pp. 1017–1022. DOI: 10.1134/S0031918X14100032
  20. Hironobu A., Kuramoto E. Recovery of electrical resistivity of high-purity iron irradiated with 30 MэВ electrons at 77 K. J. Nucl. Mater., 2000, vol, 283–287, pp. 174–178. DOI: 10.1016/S0022-3115(00)00339-1


Article reference

Resistance-Measurement Studies of the Peculiarities of the Structural State of Chromium-Nickel-Molybdenum Austenitic Reactor Steels Doped with Titanium and Phosphorus / V. L. Arbuzov, V. I. Bobrovskii, S. E. Danilov, V. V. Sagaradze // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 6. - P. 91-102. -
DOI: 10.17804/2410-9908.2017.6.091-102. -
URL: http://eng.dream-journal.org/issues/2017-6/2017-6_153.html
(accessed: 06/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru