Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2017 Issue 6

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

E. V. Mostovshchikova, B. A. Gizhevsky, L. V. Ermakova

IR ABSORPTION SPECTRA OF TiO2 SUBMICRON POWDERS SYNTHESIZED BY THE COMBUSTION METHOD

DOI: 10.17804/2410-9908.2017.6.037-047

A method for synthesizing titanium dioxide using a combustion reaction has been developed, and TiO2 powders with anatase structure have been obtained. The average particle size
(~ 500 nm) and the size of the coherent scattering region (~ 15 nm) are determined, as well as the specific surface, which depends on the type of fuel used in the reaction (5.5 m2/g for glycine and 30.5 m2/g for citric acid). Annealing in the air at temperatures up to T = 1050 °C leads to a change in the structural modification, resulting in powders with a rutile structure. The IR optical density spectra D(λ) (1 to 12 μm) of TiO2 powders are studied. The intense absorption band in the spectra is found, the position of which depends on the structural modification of TiO2 (1.8 μm to 3.1 μm). The analysis of the D(λ) spectra demonstrates that this band is a superposition of two absorption bands, one of which has a maximum at 1.2 μm and can be associated with Ti3+ ions, the other being due to the polaron-type charge carriers.

Keywords: titanium dioxide, methods for synthesizing fine powders, anatase, rutile, IR spectroscopy

References:

  1. Hu X., Li. G., Yu J.C. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir, 2010, vol. 26, no. 5, pp. 3031–3039. DOI: 10.1021/la902142b2
  2. Gupta S.M., Tripathi M. A review of TiO2 nanoparticles. Chinese Sci. Bull., 2011, vol. 56, pp. 1639–1657. DOI: 10.1007/s11434-011-4476-13
  3. Augugliaro V., Palmisano L., Sclafani A., Minero C., Pelizzetti E. Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions. Toxicological and Environmental Chemistry, 1988, vol. 16, pp. 89–109. DOI: 10.1080/027722488093572534
  4. Muscat J., Swamy V., Harrison N.M. First-principles calculations of the phase stability of TiO2. Physical Review B, 2002, vol. 65, pp. 224112. DOI: 10.1103/PhysRevB.65.2241125
  5. Tanaka K., Capule M.F.V., Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett., 1991, vol. 187, pp. 73–76. DOI: 10.1016/0009-2614(91)90486-S6
  6. Yang H., Zhu S., Pan N. Studying the mechanisms of titanium dioxide as ultravioletblocking additive for films and fabrics by an improved scheme. J. Appl. Polym. Sci., 2004, vol. 92, pp. 3201–3210. DOI: 10.1002/app.203277
  7. Kuznetsov V.N., Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments. J. Phys. Chem. C, 2009, vol. 113, pp. 15110–15123. DOI: 10.1021/jp901034t8
  8. Tealdi C., Quartarone E., Galinetto P. et al. Flexible deposition of TiO2 electrodes for photocatalytic applications: Modulation of the crystal phase as a function of the layer thickness. J. Solid State Chem., 2013, vol. 199, pp. 1–6. DOI: 10.1016/j.jssc.2012.11.0199
  9. Vargesse A.A, Muralidhazan K. Anatase–brookite mixed phase nano TiO2 catalyzed homolytic decomposition of ammonium nitrate. J. Hazard. Mater., 2011, vol. 192, iss. 3, pp. 1314–1320. DOI: 10.1016/j.jhazmat.2011.06.03610
  10. Gonzalez R.J., Zallen R., Berger H. Infrared reflectivity and lattice fundamentals in anatase TiO2. Physical Review B, 1997, vol. 55, pp. 7014–7017. DOI: 10.1103/PhysRevB.55.701411
  11. Qu Z.-W., Kroes G.-J. Theoretical Study of the Electronic Structure and Stability of Titanium Dioxide Clusters (TiO2)n with n=1–9. J. Phys. Chem. B, 2006, vol. 110, pp. 8998–9007. DOI: 10.1021/jp056607p12
  12. Zanatta A.R. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. In: AIP Advances, 2017, vol. 7, pp. 075201. DOI: 10.1063/1.499213013
  13. Liu L., Zhao C., Li Y. Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2−x Nanoparticles at Room Temperature. J. Phys. Chem. C, 2012, vol. 116, pp. 7904–7912. DOI: 10.1021/jp300932b14
  14. Wu J., Huang C. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China, 2010, vol. 4, pp. 120–126. DOI: 10.1007/s11705-009-0232-315
  15. Sarkar T., Gopinadhan K., Zhou J., Saha S., Coey J.M.D., Feng Y.P., Ariando, Venkatesan T. Electron Transport at the TiO2 Surfaces of Rutile, Anatase, and Strontium Titanate: The Influence of Orbital Corrugation. ACS Applied Materials & Interfaces, 2015, vol. 7, no. 44, pp. 24616–24621. DOI: 10.1021/acsami.5b06694


PDF      

Article reference

Mostovshchikova E. V., Gizhevsky B. A., Ermakova L. V. Ir Absorption Spectra of Tio2 Submicron Powders Synthesized by the Combustion Method // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 6. - P. 37-47. -
DOI: 10.17804/2410-9908.2017.6.037-047. -
URL: http://eng.dream-journal.org/issues/2017-6/2017-6_152.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru