Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2016 Issue 6

All Issues
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. V. Makarov, S. P. Yakovleva, E. G. Volkova, S. N. Makharova, P. G. Mordovskoy

SPECIAL FEATURES OF THE FORMATION OF THE MICROSTRUCTURE OF THE 09G2S STEEL UNDER CONDITIONS OF COLD AND WARM EQUAL-CHANNEL ANGULAR PRESSING

DOI: 10.17804/2410-9908.2016.6.039-047

Translucent electron microscopy is used to make a comparative analysis of the microstructure of the 09G2S steel in the initial state, after equal-channel angular pressing (ECAP) at 20 °C and after warm ECAP at 450 °C. The effect of ECAP at 20 °C leads to the formation of a mixed (subgranular and cellular) ferrite structure and the destruction of pearlite colonies. There occur the crushing and spheroidization of cementite particles. Warm ECAP deformation at 450 °C contributes to the formation of a polygonized structure with submicron scale elements in ferrite. In the main, the pearlite colonies undergo insignificant changes, and there are individual sections with destroyed pearlite colonies and severe dispersion of cementite. The mechanical properties of the steel in three examined structural states are presented.

Keywords: low-carbon steel, microstructure, equal-channel angular pressing, electron microscopy, mechanical properties

References:

  1. Valiev R.Z., Aleksandrov I.V. Obyomnye nanostrukturnye metallicheskie materialy [Bulk Nanostructured Metal Materials]. Moscow, Akademkniga Publ., 2007, 398 p. ISBN 978-5-94628-217-8. (In Russian).
  2. Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Materialia, 2000, vol. 48, iss. 1, pp. 1–29. DOI: 10.1016/S1359-6454(99)00285-2.
  3. Andrievskii R.A., Glezer A.M. Strength of nanostructures. Physics-Uspekhi, 2009, vol. 52, no. 4, pp. 315–334. DOI: 10.3367/UFNe.0179.200904a.0337.
  4. Makarov A.V., Savrai R.A., Malygina I.Yu., Pozdeeva N.A. Effect of strengthening friction treatment on the mechanical properties and specific features of the deformation of low-carbon steel under static and cyclic loading. Fizika i khimiya obrabotki materialov, 2009, no. 1. pp. 92–102. (In Russian).
  5. Makarov A.V., Savrai R.A., Gorkunov E.S., Yurovskikh A.S., Malygina I.Yu., Davydova N.A. Structure, mechanical characteristics, and deformation and fractures of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment. Physical Mesomechanics, 2015, vol. 18, no. 1, pp. 43–57. DOI: 10.1134/S1029959915010063.
  6. Noskova N.I., Mulyukov R.R. Submikrokristallicheskie i nanokristallicheskie metally i splavy [Submicrocrystalline and Nanocrystalline Metals and Alloys]. Ekaterinburg, UrO RAN Publ., 2003, 279 p. (In Russian).
  7. Rudskoi A.I. Kodzhaspirov G.E. Ultramelkozernistye metallicheskie materialy [Ultra-Finely Dispersed Metal Materials]. SPb., Izd-vo Politekhn. un-ta Publ., 2015, 360 p. (In Russian).
  8. Degtyarev M.V., Chashchukhina T.I., Voronova L.M. Grain Growth in Dynamically Recrystallized Copper During Annealing above and below the Temperature of Thermally Activated Nucleation. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 5, pp. 15–29. DOI: 10.17804/2410-9908.2016.5.015-029. Available at: http://dream-journal.org/DREAM_Issue_5_2016_Degtyarev_M.V._et_al._015_029.pdf.
  9. Makarov A.V., Pozdeeva N.A., Savrai R.A., Yurovskikh A.S., Malygina I.Yu. Improvement of wear resistance of hardened structural steel by nanostructuring frictional treatment. Journal of Friction and Wear, 2012, vol. 33, no. 6, pp. 433–442. DOI: 10.3103/S10683666120600.
  10. Makarov A.V., Davydova N.A., Malygina I.Y., Lyzhin V.V., Korshunov L. G. Improving the thermal stability and heat wear resistance of carburized chromium-nickel steel by nanostructuring frictional treatment. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 5, pp. 49–66. DOI: 10.17804/2410-9908.2016.5.049-066. Available at: http://dream-journal.org/DREAM_Issue_5_2016_Makarov_A.V._et_al._049_066.pdf.
  11. Yakovleva S.P., Makharova S.N., Mordovskoi P.G., Borisova M.Z. Effect of the conditions of bulk nanostructuring by megaplastic deformation on the properties of structural steel. Perspektivnye materialy, 2011, no. 13, pp. 961–967. (In Russian).
  12. Yakovleva S.P., Makharova S.N., Mordovskoi P.G. Effect of combined megaplastic deformation on the structure and properties of steel 09G2S. Obrabotka metallov, 2016, no. 1 (70), pp. 52–56. (In Russian).
  13. Astafurova E.G., Zakharova G.G., Naydenkin E.V., Dobatkin S.V., Raab G.I. Influence of equal-channel angular pressing on the structure and mechanical properties of low-carbon steel 10G2FT. The Physics of Metals and Metallography, 2010, vol. 110, no. 3, pp. 260–268. DOI: 10.1134/S0031918X10090097.
  14. Sestri Sh.M.L., Dobatkin S.V., Sidorova S.V. Formation of a submicrocrystalline structure in steel 10G2FT under cold equal-channel angular pressing followed by heating. Metally, 2004, no. 2, pp. 28–35. (In Russian).
  15. Dobatkin S.V., Odessky P.D., Pippan R., Raab G.I., Krasilnikov N.A., Arsenkin A.M. Warm and hot equal-channel angular pressing of low-carbon steels. Metally, 2004, no. 1, pp. 110–119. (In Russian).
  16. Tereshchenko N.A., Yakovleva I.L., Chukin M.V., Efimova Y.Y. Development of the rotational mode of plastic deformation upon drawing of pearlitic steels of various alloying systems. The Physics of Metals and Metallography, 2015, vol. 116, no. 3, pp. 274–284. DOI: 10.1134/S0031918X15030151.
  17. Gavrilyuk V.G. Raspredelenie ugleroda v stali [Distribution of Carbon in Steel]. Kiev, Naukova Dumka Publ., 1987, 208 p. (In Russian).
  18. Dobatkin S.V., Kaputkina L.M. Maps of structural states for the optimization of hot-working regimes of steels. The Physics of Metals and Metallography, 2001, vol. 91, no. 1, pp. 75–84.
  19. Zakharova G.G., Astafurova E.G., Tukeeva M.S., Naydenkin E.V., Raab G.I., Dobatkin S.V. Mechanical properties of ferritic-pearlitic and martensitic steel 10G2FT after equal-channel angular pressing and high-temperature annealings. Izvestiya vysshykh uchebnykh zavedeniy. Fizika, 2011, no. 4, pp. 23–28. (In Russian).

   

PDF      

Article reference

Special Features of the Formation of the Microstructure of the 09g2s Steel under Conditions of Cold and Warm Equal-Channel Angular Pressing / A. V. Makarov, S. P. Yakovleva, E. G. Volkova, S. N. Makharova, P. G. Mordovskoy // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 6. - P. 39-47. -
DOI: 10.17804/2410-9908.2016.6.039-047. -
URL: http://eng.dream-journal.org/issues/2016-6/2016-6_112.html
(accessed: 09/12/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru