Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2016 Issue 6

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. V. Smirnov , L. M. Zamaraev

ENERGY OF ACTIVATION OF THE VT5 AND VT1-0 TITANIUM ALLOYS UNDER SHORT-TERM CREEP IN AIR AND ARGON

DOI: 10.17804/2410-9908.2016.6.100-110

Test results for the short-term creep of commercially pure VT1-0 titanium and the VT5 alloy at temperatures ranging from 673 K to 1323 K and rated tensile stresses ranging between 4.45 and 9.36 MPa in air and argon are presented. The experimental results have shown a considerable decrease in the speed of creep under loading in the argon environment in comparison with that in air. The values of the activation energy determined in tests with a stepwise change of temperature by Dorn’s method have close values for the materials studied in air and argon, 250 to 300 kJ/mol, and this testifies to the identical mechanism of creep.

Keywords: titanium alloys, environmental effect on creep, creep activation energy

References:

  1. Kumar J., Raman S.G.S., Kumar V. Creep–Fatigue Interactions in Ti-6Al-4V Alloy at Ambient Temperature. Transactions of the Indian Institute of Metals, 2016, vol. 69, no. 2, pp. 349–352. DOI: 10.1007/s12666-015-0766-7.
  2. Grabovetskaya G.P., Zabudchenko O.V., Stepanova E.N. Effect of hydrogen on the low-temperature creep of a submicrocrystalline Ti-6Al-4V alloy. Russian Metallurgy (Metally), 2010, vol. 2010, no. 3, pp. 229–234. DOI: 10.1134/S0036029510030134.
  3. Yu H., Dong C., Jiao Z., Kong F., Chen Y., Su Y. High temperature creep and fatigue behavior and life prediction method of a TiAl alloy. Acta Metallurgica Sinica, 2013, vol. 49, no. 11, pp. 1311–1317. DOI: 10.3724/SP.J.1037.2013.00434.
  4. Rosen A., Rottem A. The effect of high temperature exposure on the creep resistance of Ti6Al4V alloy. Mater. Sci. Eng. A, 1976, vol. 22, iss. C, pp. 23–29. DOI: 10.1016/0025-5416(76)90132-4.
  5. Aksenov Yu.A., Bashkin I.O., Kolmogorov V.L., Ponyatovskiy Ye.G., Taluts G.G., Kataya V.K., Levin I.V., Potapenko Yu.I., Trubin A.N. Influence of hydrogen on the plasticity and elastic stiffness of technical titanium VT1-0 at temperatures up to 750°C. Physics of Metals and Metallography, 1989, vol. 67, no. 5, pp. 157–163.
  6. Reis D.A.P., De Moura Neto C., Neto F.P., Barboza M.J.R., Da Silva C.R.M. The oxidation effect in the titanium alloy at high temperature. SAE Technical Papers, 2007.
  7. Kolychev B.A. Vodorodnaya khrupkost metallov [Hydrogen Brittleness of Metals]. M., Metallurgiya Publ., 1985, 286 p. (In Russian).
  8. Mekhanicheskie svoistva legkikh splavov pri temperaturakh i skorostyakh obrabotki davleniem: spravochnik [Mechanical Properties of Light Alloys at Temperatures and Rates of Forming: reference book, P.G. Miklyaev, ed.]. M., Metallurgiya Publ., 1994, 280 p. (In Russian).
  9. Alabort E., Kontis P., Barba D., Dragnevski K., Reed R.C. On the mechanisms of superplasticity in Ti-6Al-4V. Acta Materialia, 2016, vol. 105, no. 1, pp. 449–463. DOI: 10.1016/j.actamat.2015.12.003.
  10. Kolachev B.A. Hydrogen in metals and alloys. Metal Science and Heat Treatment, 1999, vol. 41, nos. 3–4, pp. 93–100. DOI: 10.1007/BF02467692.
  11. Reis D.A.P., Silva C.R.M., Nono M.C.A., Barboza M.J.R., Neto F., Perez E.A.C. Effect of environment on the creep behavior of the Ti-6Al-4V alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2005, vol. 399, nos. 1–2, pp. 276–280. DOI: 10.1016/j.msea.2005.03.073.
  12. Lokoshchenko A.M., Il'In A.A., Mamonov A.M., Nazarov V.V. Analysis of the creep and long-term strength of VT6 titanium alloy with preliminarily injected hydrogen. Materials Science, 2008, vol. 44, no. 5, pp. 700–707. DOI: 10.1007/s11003-009-9128-0.
  13. Paton N.E., Williams J.C. Hydrogen in Metals, eds. I.M. Bernstein and A.W. Thompson, Metals Park, OH, ASM, 1974, pp. 409–431.
  14. Wasz M.L., Brotzen F.R., McLellan R.B., Griffin A.J.Jr. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int. Mater. Rev., 1996, vol. 41, no. 1, pp. 1–12.
  15. Beevers C.J., Warren M.R., Edmonds D.V. Fracture of titanium-hydrogen alloys. Journal of the Less-Common Metals, 1968, vol. 14, no. 4, pp. 387–396. DOI: 10.1016/0022-5088(68)90162-8.
  16. Makarov A.V., Gorkunov E.S, Kogan L.Kh. Application of the eddy-current method for estimating the wear resistance of hydrogen-alloyed beta-titanium alloy BT35. Russian Journal of Nondestructive Testing, 2007, vol. 43, no. 1, pp. 21–26. DOI: 10.1134/S1061830907010032.
  17. Suzuki H., Fukushima H., Takai K. Role of Hydrides and Solute Hydrogen in Embrittlement of Pure Titanium. Journal of the Japan Institute of Metals and Materials, 2015, vol. 79, no. 3, pp. 82–88. DOI: 10.2320/jinstmet.JC201402.
  18. Smirnov S.V., Zamaraev L.M., Matafonov P.P. Short-term creep of a VT1-0 titanium alloy during heating in a hydrogen atmosphere. Russian Metallurgy (Metally), 2010, vol. 2010, no. 1, pp. 67–70. DOI: 10.1134/S0036029510010131.
  19. Reis D.A.P., Neto C.M., Nono M.D.C.A., Barboza M.J.R., Da Silva C.R.M., Neto F.P. Development of a system to creep tests in controlled atmosphere. In: Proceedings of the 65th ABM International Congress, 18th IFHTSE Congress and 1st TMS/ABM International Materials Congress, Rio de Janeiro, Brazil, 26–30 July 2010, vol. 5, pp. 4229–4235.
  20. Evans W.J., Jones J.P., Williams S. The interactions between fatigue, creep and environmental damage in Ti 6246 and Udimet 720Li. International Journal of Fatigue, 2005, vol. 27, iss. 10–12, pp. 1473–1484. DOI: 10.1016/j.ijfatigue.2005.06.029.
  21. Smirnov S.V., Zamaraev L.M., Matafonov P.P. Short-term thermal cyclic creep and fracture of a VT1-0 titanium alloy in a hydrogen atmosphere. Russian Metallurgy (Metally), 2012, vol. 2012, no. 3, pp. 255–257. DOI: 10.1134/S0036029512030123.
  22. Sherby O.D., Lytton J.L, Dorn J.E. Activation energies for creep of high-purity aluminum. Acta Metallurgica, 1957, vol. 5, no. 4, pp. 219–227. DOI: 10.1016/0001-6160(57)90169-4.
  23. Rozenberg V.M. Osnovy zharoprochnosti metallicheskikh splavov [Basics of High-Temperature Strength of Metal Alloys]. M., Metallurgiya Publ., 1973, 325 p. (In Russian).
  24. Frost H.J., Ashby M.F. Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982.
  25. McLean D. Mechanical Properties of Metals, John Wiley & Sons Inc., New York and London, 1962, 403 p.
  26. Doner M., Conrad H. Deformation Mechanisms in Commercial Ti-50A (0.5 at. pct Oeq) at Intermediate and High Temperatures (0.3–0.6 Tm). Metallurgical Transactions, 1973, vol. 4, iss. 12, pp. 2809–2817. DOI: 10.1007/BF02644581.
  27. Goswam T. Damage Development under Creep-Fatigue in a Titanium and a Superalloy. High Temperature Materials and Processes, 1995, vol. 14, no. 2, pp. 47–56. DOI: 10.1515/HTMP.1995.14.2.47.
  28. Sanchez J.N., De Fontaine D., Anomalous diffusion in omega forming systems. Acta Metallurgia, 1978, vol. 26, no. 7, pp. 1083–1095.


PDF      

Article reference

Smirnov S. V., Zamaraev L. M. Energy of Activation of the Vt5 and Vt1-0 Titanium Alloys under Short-Term Creep in Air and Argon // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 6. - P. 100-110. -
DOI: 10.17804/2410-9908.2016.6.100-110. -
URL: http://eng.dream-journal.org/issues/2016-6/2016-6_106.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru