Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2016 Issue 5

All Issues
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova

GRAIN GROWTH IN DYNAMICALLY RECRYSTALLIZED COPPER DURING ANNEALING ABOVE AND BELOW THE TEMPERATURE OF THERMALLY ACTIVATED NUCLEATION

DOI: 10.17804/2410-9908.2016.5.015-029

The effect of dynamic recrystallization on the change of the structure of copper (99.97 %), deformed by the "shear under pressure" and ECAP methods, during subsequent heating is studied. It is shown that different conditions of deformation of copper provide varying degrees of dynamic recrystallization, dynamic recovery and strain hardening. A submicrograin structure fails to be formed after primary recrystallization is completed. Dynamic recrystallization leads to the formation of the coarsest grain (15-20 μm) and size heterogeneous structure during subsequent recrystallization at 100 °C (below the temperature of thermally activated nucleation in moderately deformed copper). Heating at temperatures ranging between 150 °C and 400 °C (above the temperature of thermally activated nucleation) leads to the formation of finer grains in the fully recrystallized material. In samples with a partially dynamically recrystallized structure the grain size changes insignificantly. The finest grain with an average size of 4-7 μm is formed after short-time annealing at 300 °C.

Keywords: severe plastic deformation, copper, temperature-compensated strain rate, dynamic recrystallization, static recrystallization, structure

References:

  1. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of Metals and Alloys]. Moscow, MISIS Publ., 2005, 432 p. (In Russian).
  2. Voronova L.M., Degtyarev M.V., Chashchukhina T.I. Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening. Physics of Metals and Metallography, 2007, vol. 104, no. 3, pp. 262–273. DOI: 10.1134/S0031918X07090086.
  3. Krasnoperova Yu.G., Degtyarev M.V., Voronova L.M., Chashchukhina T.I. Effect of Annealing Temperature on the Recrystallization of Nickel with Different Ultradisperse Structures. Physics of Metals and Metallography, 2016, vol. 117, no. 3, pp. 267–274. DOI: 10.1134/S0031918X16030078.
  4. Smirnova N.A., Levit V.I., Pilyugin V.P., Kuznetsov R.I., Degtyarev M.V. Peculiarities of low-temperature recrystallization of nickel and copper. Fizika Metallov i Metallovedenie, 1986, vol. 62, iss. 3, pp. 566–570.
  5. Degtyarev M.V., Chashchukhina T.I., Romanova M.Yu., Voronova L.M. Correlation between the copper structure and temperature-rate parameters of pressure-induced shear deformation. Doklady Physics, 2004, vol. 49, no. 7, pp. 415–418. DOI: 10.1134/1.1784855.
  6. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Patselov A.M., Pilyugin V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation. Асta Materialia, 2007, vol. 55, pp. 6039–6050. DOI: 10.1016/j.actamat.2007.04.017.
  7. Gindin I.A., Lazarev B.G., Starodub J.D., Lazareva M.B. Low-Temperature Recrystallization of Copper Rolled at 77 and 20 K. Dokl. Akad. Nauk SSSR, 1966, vol. 171, no. 3, pp. 552–554.
  8. Bykov V.M., Likhachev V.A., Nikonov Yu.A., Serbina L.L., Shibalova L.I. Fragmentation and dynamic recrystallization of copper at large and very large plastic deformations. Fizika Metallov i Metallovedenie, 1978, vol. 45, no. 1, pp. 163–169.
  9. Chuvil’deev V.N., Kopylov V.I., Nokhrin A.V., Makarov I.M., Malashenko L.M., Kukareko V.A. Anomalous grain growth in nano- and microcrystalline metals produced by equal-channel angular pressing methods. Part I. Structural studies. Materialovedenie, 2003, no. 4, pp. 9–17.
  10. Kopylov V.I., Makarov I.M., Nesterova E.V., Rybin V.V. Crystallographic analysis of a submicrocrystalline structure obtained by ECA pressing of highly pure copper. Voprosy Materialovedeniya, 2002, no. 1 (29), pp. 273–278. (In Russian).
  11. Amirkhanov N.M., Islamgaliev R.K., Valiev R.Z. Thermal Relaxation and Grain Growth upon Isothermal Annealing of Ultrafine-Grained Copper Produced by Severe Plastic Deformation. Fizika Metallov i Metallovedenie, 1998, vol. 86, iss. 3, pp. 99–105.
  12. Orlova D.K., Chashchukhina T.I., Voronova L.M., Degtyarev M.V., Krasnoperova Yu.G. Effect of impurities on dynamic recrystallization in copper deformed in bridgman anvils. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 90–98. DOI: 10.17804/2410-9908.2015.5.090-098. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Orlova_D.K._et_al._090_098.pdf (accessed 15.09.2016).
  13. Shirinkina I.G., Brodova I.G., Astafiev V.V. Thermal stability of the ultrafine amts aluminum alloy after high strain-rate deformation. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 72–79. DOI: 10.17804/2410-9908.2015.5.072-079. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Shirinkina_I.G._et_al._072_079.pdf (accessed 13.09.2016).
  14. Gusev A.I. Nanokristallicheskie materialy: metody polucheniya i svoistva [Nanocrystalline Materials: Production Methods and Properties.]. Ekaterinburg, UrO RAN Publ., 1998, 200 p. (In Russian).
  15. Pilyugin V.P. Structural and phase transformations in iron alloys under high pressure deformation. Ph.D thesis, Ekaterinburg, 1993. (In Russian).
  16. Chashchukhina T.I., Degtyarev M.V., Voronova L.M. Effect of Pressure on the Evolution of Copper Microstructure upon Large Plastic Deformation. Physics of Metals and Metallography, 2010, vol. 109, iss. 2, pp. 201–209. DOI: 10.1134/S0031918X10020122.
  17. Segal V.M., Reznikov V.I., Kopylov V.I., Pavlik L.A., Malyshev V.F. Protsessy plasticheskogo strukturoobrazovaniya metallov [Processes of Plastic Structure Formation of Metals]. Minsk, Navuka i tekhnika Publ., 1994, 232 p. (In Russian).
  18. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Kopylov V.I. Establishment of conformity between the true strain, hardness and size of the structural elements of iron and structural steel under severe plastic deformation in different ways. Fizicheskaya Mezomekhanika, 2013, vol. 16, no. 6, pp. 71–80. (In Russian).
  19. Degtyarev M.V., Voronova L.M., Chashchukhina T.I. Low-temperature recrystallization of pure iron deformed by shear under pressure. Physics of Metals and Metallography, 2004, vol. 97, no. 1, pp. 72–81.
  20. Frolova N.Yu., Zeldovich V.I., Khomskaya I.V., Kheifets A.E., Shorokhov E.V. Influence of aging and strain on the structure and mechanical properties of chromium-zirconium bronze. Diagnostics, Resource and Mechanics of materials and structure, 2015, iss. 5, pp. 99–108. DOI: 10.17804/2410-9908.2015.5.099-108. Available at: http://dream-journal.org/DREAM_Issue_5_2015_Frolova_N._Yu._et_al._099_108.pdf (accessed 13.09.2016).


PDF      

Article reference

Degtyarev M. V., Chashchukhina T. I., Voronova L. M. Grain Growth in Dynamically Recrystallized Copper During Annealing above and below the Temperature of Thermally Activated Nucleation // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 5. - P. 15-29. -
DOI: 10.17804/2410-9908.2016.5.015-029. -
URL: http://eng.dream-journal.org/issues/2016-5/2016-5_91.html
(accessed: 05/25/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru