A. B. Vandyshev
ANALYZING THE PARAMETERS OF MEMBRANE CATALYTIC SYSTEMS FOR EXTRACTION OF HIGHLY PURE HYDROGEN FROM HYDROCARBON FEEDSTOCK WITH THE APPLICATION OF MATHEMATICAL MODELING
DOI: 10.17804/2410-9908.2016.4.006-045 This paper presents the results of using a mathematical model of membrane extraction of highly pure hydrogen from the products of steam conversion of hydrocarbons. The model is intended for estimating the basic parameters of a number of membrane catalytic systems different in efficiency and design. It is shown that the mathematical model accurately describes the experimental data available in the literature, as well as the results of calculating the parameters of a membrane catalytic reformer by a “kinetic” mathematical model.
Keywords: Mathematical modeling; technological and design parameters; membrane catalytic systems; highly pure hydrogen; methane; natural gas References: 1. Uemiya S. Brief review of steam reforming using a metal membrane reactor. Topics in Catalysis, 2004, vol. 29, iss. 1, pp. 79–84. DOI: 10.1023/B:TOCA.0000024930.45680.c7.
2. Shirasaki Y., Tsuneki T., Ota Y., Yasuda I., Tachibana S., Nakajima H., Kobayashi K. Development of membrane reformer system for highly efficient hydrogen production from natural gas. International Journal of Hydrogen Energy, 2009, vol. 34, iss. 10, pp. 4482–4487. DOI: 10.1016/j.ijhydene.2008.08.056.
3. Tereshchenko G.F., Orekhova N.V., Ermilova M.M. Metal-containing membrane reactors. Kriticheskie tekhnologii. Membrany, 2007, no.1, pp. 4–20. (In Russian).
4. Vandyshev A.B., Kulikov V.A. Preparation of specially pure hydrogen at 500-700°c from methane in high-temperature converter-membrane equipment, combined with a CH4 conversion catalyst. Chemical and Petroleum Engineering, 2011, vol. 47, nos. 5–6, pp. 327–333. DOI: 10.1007/s10556-011-9469-z.
5. Vandyshev A.B., Kulikov V.A. Determination of efficiency of special-purity hydrogen production from products of methane conversion with oxygen in membrane apparatus in combination with catalytic methane or carbon monoxide conversion. Chemical and Petroleum Engineering, 2011, vol. 47, nos. 7–8, pp. 468–474. DOI: 10.1007/s10556-011-9494-y.
6. Vandyshev A.B., Kulikov V.A. Extraction of extra pure hydrogen from methane steam conversion products in membrane equipment, combined simultaneously with two CO and CH4 conversion catalysts. Chemical and Petroleum Engineering, 2012, vol. 47, nos. 11–12, pp. 831–836. DOI: 10.1007/s10556-012-9558-7.
7. Vandyshev A.B., Kulikov V.A. Evaluation of efficiency of special-purity hydrogen production from products of steam conversion of methane and its close homologs in high-temperature converter-membrane equipment system using methane or carbon monoxide conversion catalyst. Chemical and Petroleum Engineering, 2013, vol. 48, iss. 9–10, pp. 566–575. DOI: 10.1007/s10556-013-9659-y.
8. Compact membrane reformer for hydrogen production. Available at: http://www.lindeus-engineering.com
9. Murav'ev L.L., Vandyshev A.B., Makarov V.M. Modeling of membrane extraction of hydrogen from the products of steam conversion of hydrocarbons. Theoretical Foundations of Chemical Engineering, 1999, vol. 33, iss. 3, pp. 258–263.
10. Gallucci F., Fernandez E., Corengia P., Annaland M. Recent advances on membranes and membrane reactors for hydrogen production (Review). Chemical Engineering Science, 2013, vol. 92, pp. 40–66. DOI: 10.1016/j.ces.2013.01.008.
11. Gallucci F., Basile A., Iulianelli A., Kuipers H. A Review on Patents for Hydrogen Production Using Membrane Reactors. Recent Patents on Chemical Engineering, 2009, vol. 2, iss. 3, pp. 207–222. DOI: 10.2174/1874478810902030207.
12. Yasuda I., Shirasaki Y., Tsuneki T., Asakura T., Kataoka A., Shinkai H., Yamaguchi R. Development of Membrane Reformer for Highly-efficient Hydrogen Production from Natural Gas. In: Proc. of the 15th World Hydrogen Energy Conference (CD-ROM), Yokohama, Japan, 27 June–2 July, 2004.
13. Kurokawa H., Shirasaki Y., Tsuneki T., Yasuda I., Tachibana S., Nakajima H., Kobayashi K. Development of highly efficient membrane reformer system for hydrogen production from natural gas. In: Proc. of the 17th World Hydrogen Energy Conference (WHEC 2008), Queensland, Australia, 15–19 June, 2008, pp. 41–45.
14. Lukyanov B.N. Obtaining Ultra-Pure Hydrogen for Fuel Cells in the Reactors with Membrane. Chemistry for Sustainable Development, 2012, no. 20, pp. 251–263. Available at: http://sibran.ru/upload/iblock/fb6/fb61628e4d8dae3d9f6ee28e7e53d223.pdf15. Burkhanov G.S., Gorina N.B., Kolchugina N.B., Roshan N.R. Palladium alloys for hydrogen energy. Rossiyskiy khimicheskiy zhurnal, 2006, vol. 50, no. 4, pp. 36–40. (In Russian).
16. Lukyanov B.N., Andreev D.V., Parmon V.N. Catalytic reactors with hydrogen membrane separation. Chemical Engineering Journal, 2009, vol. 154, iss. 1–3. pp. 258–266. DOI: 10.1016/j.cej.2009.04.023.
17. Sakamoto Y., Chen F.L., Furukawa M., Noguchi M. Permeability and diffusivity of hydrogen in palladium-rich Pd-Y(Gd)-Ag ternary alloys. J. Alloys Compounds, 1992, vol. 185, iss. 2, pp. 191–205. DOI: 10.1016/0925-8388(92)90468-O.
18. Murav'ev L.L; Vandyshev A.B; Makarov V.M. The modeling of membrane extraction of hydrogen from multicomponent gas mixtures. Theoretical Foundations of Chemical Engineering, 1999, vol. 33, iss. 2, pp. 169–171.
19. Yakabe H., Iseki T., Kurokawa H., Hikosaka H., Takagi Y., Ito M. Development of hydrogen production systems with Pd-based alloy membrane. In: Proc. of the 19th World Hydrogen Energy Conference, Toronto, Canada, 3–7 June, 2012.
20. Chen Y., Wang Y., Xu H., Xiong G. Hydrogen production capacity of membrane reformer for methane steam reforming near practical working conditions. Journal of Membrane Science, 2008, vol. 322, iss. 2, pp. 453–459. DOI: 10.1016/j.memsci.2008.05.051.
21. Chen Y., Wang Y., Xu H., Xiong G. Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor. Appl. Catal. B, 2008, vol. 80, pp. 283–294.
22. Goltsov V.A. Hydrogen in metals. In: Voprosy atomnoy nauki i tekhniki. Seriya: Atomno-vodorodnaya energetika. [Problems of Nuclear Science and Technology. Series: Atomic-Hydrogen Energy, iss. 1 (2)]. М., IAE Publ., 1978, pp. 65–100. (In Russian).
23. Shigarov A.B., Kirillov V.A. Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts. Theoretical Foundations of Chemical Engineering, 2012, vol. 46, no. 2, pp. 97–107. DOI: 10.1134/S004057951202011X24.
24. Gallucci F., Paturzo L., Basile A. A simulation study of the steam reforming of methane in a dense tubular membrane reactor. Int. J. Hydrogen Energy, 2004, vol. 29, iss. 6, pp. 611–617. DOI: 10.1016/j.ijhydene.2003.08.003.
25. Fernandes F.A.N., Soares A.B. Modeling of methane reforming in a palladium membrane reactor. Latin American Applied Research, 2006, vol. 36, no. 3, pp. 155–161.
26. Kirillov V.A., Meshcheryakov V.D., Brizitskii O.F., Terent'ev V.Ya. Analysis of a power system based on low-temperature fuel cells and a fuel processor with a membrane hydrogen separator. Theoretical Foundations of Chemical Engineering, 2010, vol. 44, no. 3, pp. 227–235. DOI: 10.1134/S0040579510030012.
27. Vandyshev A.B., Kulikov V.A. Hydrogen permeability of palladium membranes made of alloy V-1 in laboratory investigations and membrane devices. Chemical and Petroleum Engineering, 2015, vol. 51, iss. 5–6, pp. 396–401. DOI: 10.1007/s10556-015-0058-4.
Article reference
Vandyshev A. B. Analyzing the Parameters of Membrane Catalytic Systems for Extraction of Highly Pure Hydrogen from Hydrocarbon Feedstock with the Application of Mathematical Modeling // Diagnostics, Resource and Mechanics of materials and structures. -
2016. - Iss. 4. - P. 6-45. - DOI: 10.17804/2410-9908.2016.4.006-045. -
URL: http://eng.dream-journal.org/issues/2016-4/2016-4_87.html (accessed: 11/21/2024).
|