Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2016 Issue 1

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. V. Bochkareva, A. G. Lunev , Yu. V. Li, S. A. Barannikova,  L. B. Zuev

THE DIGITAL IMAGE CORRELATION METHOD APPLIED TO STUDYING THE LOCALIZATION OF THE PLASTIC DEFORMATION OF AN ALLUMINUM ALLOY ELECTROLYTICALLY SATURATED WITH HYDROGEN

DOI: 10.17804/2410-9908.2016.1.045-054

The paper presents investigations of the effect of hydrogen embrittlement on the plastic flow. The studies are performed for test samples of aluminum alloy subjected to electrolytic hydrogenation in a three-electrode electrochemical cell at a controlled constant cathode potential using the Digital Image Correlation method. Diagrams of localized plasticity wave propagation through the length of the sample under deformation have been obtained. The deformation diagrams are examined for the deformed samples of the aluminum alloy and also main parameters of localized plasticity patterns are determined. Using the scanning electron microscopy method, the changes in the fracture surface are investigated.

Keywords: hydrogen embrittlement, duralumin, plasticity, microhardness, localized deformation

References:

  1. Semenova I.V., Florianovich G.M., Khoroshilov A.V. Korroziya i zashchita ot korrozii [Corrosion and Corrosion Prevention]. Moskow, Fizmatlit Publ., 2002, 335. (In Russian).
  2. Lunarska E., Chernyaeva O. Effect of precipitates on hydrogen transport and hydrogen embrittlement of aluminum alloys. Materials Science, 2004, vol. 40, iss. 3, pp. 399–407. DOI: 10.1007/s11003-005-0049-2.
  3. Kannan M., Raja V.S. Hydrogen embrittlement susceptibility of over aged 7010 Al-alloy. Journal of Materials Science, 2006, vol. 41, pp. 5495–5499. DOI: 10.1007/s10853-006-0287-1.
  4. Kim S.J., Han M.S., Jang S.K. Electrochemical characteristics of Al-Mg alloy in seawater for leisure ship: Stress corrosion cracking and hydrogen embrittlement. Korean Journal of Chemical Engineering, 2009, vol. 26, iss. 1, pp. 250–257. DOI: 10.1007/s11814-009-0042-9.
  5. Kumar S., Namboodhiri T.K.G. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020. Bulletin of Materials Science, 2011, vol. 34, no. 2, pp. 311–321. DOI: 10.1007/s12034-011-0066-8.
  6. Nykyforchyn H.M., Ostash O.P., Tsyrul’nyk O.T., Andreiko I.M., Holovatyuk Yu.V. Electrochemical evaluation of the in-service degradation of an aircraft aluminum alloy. Materials Science, 2008, vol. 44, iss. 2, pp. 254–259. DOI: 10.1007/s11003-008-9067-1.
  7. Plekhov O.A., Naimark O., Saintier N. Experimental study of energy accumulation and dissipation in iron in an elastic-plastic transition. Technical Physics, 2007, vol. 52, no. 9, pp. 1236–1238. DOI: 10.1134/S106378420709023X.
  8. Tretyakova T.V., Vildeman V.E. Studying Cracks Development under Complex Loading Conditions by Digital Image Correlation. Zavodskaya Laboratoriya. Diagnostika Materialov, 2012, vol. 78, no. 6, pp. 54–58. (In Russian).
  9. Shibkov A.A., Zolotov A.E., Zheltov M.A. Mechanisms of the nucleation of macrolocalized deformation bands. Izvestiya RAN. Seriya Fizicheskaya, 2012, vol. 76, no.1, pp. 85–95. (In Russian).
  10. Danilov V.I., Bochkaryova A.V., Zuev L.B. Macrolocalization of deformation in material having unstable plastic flow behavior. The Physics of Metals and Metallography, 2009, vol. 107, iss. 6, pp. 616–623. DOI: 10.1134/S0031918X0906012X.
  11. Zuev L.B., Gorbatenko V.V., Pavlichev K.V. Elaboration of speckle photography techniques for plastic flow analyses. Measurement Science and Technology, 2010, vol. 21, no. 5, pp. 1–5. DOI: 10.1088/0957-0233/21/5/054014.
  12. Takai K., Shodа H., Suzuki H., Nagumo M. Lattice defects dominating hydrogen-related failure of metals. Acta Materialia, 2008, vol. 56, iss. 18, pp. 5158–5167. DOI: 10.1016/j.actamat.2008.06.031.
  13. Yagodzinskyy Y., Todoshchenko O., Papula S., Hänninen H. Hydrogen Solubility and Diffusion in Austenitic Stainless Steels Studied with Thermal Desorption pectroscopy. Steel Research International, 2011, vol. 82, iss. 1, pp. 20–25. DOI: 10.1002/srin.201000227.
  14. Barannikova S.A., Nadezhkin M.V., Mel’nichuk V.A., Zuev L.B. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen. Technical Physics Letters, 2011, vol. 37, no. 9, pp. 793–796. DOI: 10.1134/S1063785011090057.
  15. Barannikova S.A., Nadezhkin M.V., Lunev A.G., Gorbatenko V.V., Shlyakhova G.V., Zuev L.B. Effect of hydrogen on the localization of plastic deformation under tensile of low-carbon steel. Metallofizica i Noveyshie Tekhnologii, 2014, vol. 36, iss. 2, pp. 229–245. (In Russian).
  16. Barannikova S.A., Nadezhkin M.V., Lunev A.G., Gorbatenko V.V., Zuev L.B. Regularities in localization of plastic flow upon electrolytic hydrogenation of an iron bcc-alloy. Technical Physics Letters, 2014, vol. 40, iss. 3, pp. 211–214. DOI: 10.1134/S1063785014030043.
  17. Birnbaum H.K., Sofronis P. Hydrogen-enhanced localized plasticity – a mechanism for hydrogen-related fracture. Material Science and Engineering: A, 1994, vol. 176, iss. 1–2, pp. 191–202. DOI: 10.1016/0921-5093(94)90975-X.
  18. McDonald R.J., Efstathiou C., Curath P. The wave-like plastic deformation of single crystals copper. Journal of Engineering Materials and Technology, 2009, vol. 131, iss. 3, pp. 692–703. DOI: 10.1115/1.3120410.
  19. Asharia A., Beaudoin A., Miller R. New perspectives in plasticity theory: dislocation nucleation, waves and partial continuity of plastic strain ratе. Mathematics and Mechanics of Solids, 2008, vol. 13, no. 3–4, pp. 292–315. DOI: 10.1177/1081286507086903.
  20. Fressengeas C., Beaudoin A., Entemeyer D. Lebedkina T., Lebyodkin M., Taupin V. Dislocation transport and intermittency in the plasticity of crystalline solids. Physical Review B, 2009, vol. 79, iss.1, pp. 014108-1–014108-9. DOI: 10.1103/PhysRevB.79.014108.


PDF      

Article reference

The Digital Image Correlation Method Applied to Studying the Localization of the Plastic Deformation of An Alluminum Alloy Electrolytically Saturated with Hydrogen / A. V. Bochkareva, A. G. Lunev, Yu. V. Li, S. A. Barannikova, L. B. Zuev // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 1. - P. 45-54. -
DOI: 10.17804/2410-9908.2016.1.045-054. -
URL: http://eng.dream-journal.org/issues/2016-1/2016-1_74.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru