Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2015 Issue 6

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. P. Rubshtein, Yu. V. Korkh, A. B. Vladimirov, A. B. Rinkevich, S. A. Plotnikov

STUDYING NANOCOMPOSITE FILMS WITH A MATRIX-FORMING CARBON BY KELVIN PROBE FORCE MICROSCOPY

DOI: 10.17804/2410-9908.2015.6.104-113

Nanocomposite TiC/a-C and diamond-like carbon a-C films obtained by vacuum ion-plasma method have been studied by Kelvin Probe force microscopy. Films of thickness 200 nm were deposited on silicon wafers. The structure and composition of nanocomposite TiC/a-C films were varied by deposition conditions. It is shown that the average surface potential VSPav depends on the pulse frequency of graphite target sputtering during film deposition. Amount of sp3 bonded carbon on the film surface increases with scale up frequency. The VSPav of TiC/a-C nanocomposite films depends on phase composition (Ti, TiC, a-C) and their ratio. The numerical calculated volume fractions of the phases in the TiC/a-C films correlates with VSPav.

Keywords: nanocomposite films, diamond-like carbon, titanium carbide, Kelvin probe force microscopy, average surface potential

References:

  1. Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports, 2002, vol. 37, iss. 4–6, pp. 129–281. DOI: 10.1016/S0927-796X(02)00005-0.
  2. Rubstein A.P., Makarova E.B., Trakhtenberg I.Sh., Kudryavtseva I.P., Bliznets D.G., Philippov Yu.I., Shlykov I.L. Osseointegration of porous titanium modified by diamond-like carbon and carbon nitride. Diamond and Related Materials, 2012, vol. 22, pp. 128–135. DOI: 10.1016/j.diamond.2011.12.030.
  3. Trakhtenberg I.Sh., Vladimirov A.B., Plotnikov S.A., Rubshtein A.P., Vykhodets V.B., Bakunin O.M. Effect of adhesion strength of DLC to steel on the coating erosion mechanism. Diamond and Related Materials, 2001, vol. 10, iss. 9–10, pp. 1824–1828. DOI: 10.1016/S0925-9635(01)00430-7.
  4. Musil J. Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 2000, vol. 125, iss. 1–3, pp. 322–330. DOI: 10.1016/S0257-8972(99)00586-1.
  5. Veprek S., Veprek-Heijman Maritza G.J., Karvankova P., Prochazka J. Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005, vol. 476, iss. 1, pp. 1–29. DOI: 10.1016/j.tsf.2004.10.053.
  6. Yang Q., Zhao L.R. Microstructure, mechanical and tribological properties of novel multicomponent nanolayered nitride coatings. Surface and Coatings Technology, 2005, vol. 200, iss. 5–6, pp. 1709–1713. DOI: 10.1016/j.surfcoat.2005.08.087.
  7. Dai W., Ke P., Moon M.W., Lee K.R., Wang A. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon ilms fabricated by a hybrid ion beam method. Thin Solid Films, 2012, vol. 520, iss. 19, pp. 6057–6063. DOI: 10.1016/j.tsf.2012.04.016.
  8. Guo J., Hu X.J., Lu Y.H., Shen Y.G. Microstructure Evolution of nc-TiN/a-(C, CNx) Nanocomposite Films with Different Amorphous Phase Amounts. Procedia Engineering, 2013, vol. 67, pp. 388–396. DOI: 10.1016/j.proeng.2013.12.038.
  9. Gulbinski W., Mathur S., Shen H., Suszko T., Gilewicz A., Warcholinski B. Evaluation of phase, composition, microstructure and properties in TiC/a-C:H thin films deposited by magnetron sputtering. Applied Surface Science, 2005, vol. 239, iss. 3–4, pp. 302–310. DOI: 10.1016/j.apsusc.2004.05.278.
  10. Foong Y.M., Koh A.T.T., Lim S.R., Hsieh J., Chua D.H.C. Materials properties of ZnO/diamond-like carbon (DLC) nanocomposite fabricated with different source of targets. Diamond and Related Materials, 2012, vol. 25, pp. 103–110. DOI: 10.1016/j.diamond.2012.02.018.
  11. Zhang S., Bui X.L., Jiang J., Li X. Microstructure and tribological properties of magnetron sputtered nc-TiC/a-C nanocomposite. Surface and Coatings Technology, 2005, vol. 198, iss. 1–3, pp. 206–211. DOI: 10.1016/j.surfcoat.2004.10.041.
  12. Melitz W., Shen J., Kummel A.C., Lee S. Kelvin probe force microscopy and its application. Surface Science Reports, 2011, vol. 66, iss. 1, pp. 1–27. DOI: 10.1016/j.surfrep.2010.10.001.
  13. Nonnenmacher M., O’Boyle M.P., Wickramasinghe H.K. Kelvin probe force microscopy. Applied Physics Letters, 1991, vol. 58, iss. 25, pp. 2921–2923. DOI: 10.1063/1.105227.
  14. Trakhtenberg I.Sh., Gavrilov N.V., Emlin D.R., Plotnikov S.A., Vladimirov A.B., Volkova E.G., Rubshtein A.P. Nanocomposite vacuum-arc TiC/a-C:H coatings prepared using an additional ionization of acetylene. The Physics of Metals and Metallography, 2014, vol. 115, iss. 7, pp. 723–729. DOI: 10.1134/S0031918X14070102.
  15. Trakhtenberg I.Sh., Vladimirov A.B., Rubstein A.P., Kuzmina E.V., Uemura K., Gontar A.G., Dub S.N. The analysis of microhardness measurement approach for characterization of hard coatings. Diamond and Related Materials, 2003, vol. 12, iss. 10–11, pp. 1788–1792. DOI: 10.1016/S0925-9635(03)00288-7.
  16. Trakhtenberg I.Sh., Rubshtein A.P., Vladimirov A.B., Yugov V.A., Plotnikov S.A., Volkova E.G. Formation of morphology of surface of diamond-like films condenced upon arc deposition of graphite in a vacuum. The Physics of Metals and Metallography, 2005, vol. 100, iss. 1, pp. 56–60.
  17. Xie W.G., Chen J., Chen J., Deng S.Z., She J.C., Xu N.S. Effect of hydrogen treatment on the field emission of amorphous carbon film. Journal of Applied Physics, 2007, vol. 101, iss. 8, pp. 084315-084500. DOI: 10.1063/1.2724426.
  18. Ilie A., Hart A., Flewitt J., Robertson J., Milne W.I. Effect of work function and surface microstructure on field emission of tetrahedral amorphous carbon. Journal of Applied Physics, 2000, vol. 88, iss. 10, pp. 6002–6010. DOI: 10.1063/1.1314874.


PDF      

Article reference

Studying Nanocomposite Films with a Matrix-Forming Carbon by Kelvin Probe Force Microscopy / A. P. Rubshtein, Yu. V. Korkh, A. B. Vladimirov, A. B. Rinkevich, S. A. Plotnikov // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 6. - P. 104-113. -
DOI: 10.17804/2410-9908.2015.6.104-113. -
URL: http://eng.dream-journal.org/issues/2015-6/2015-6_60.html
(accessed: 03/29/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru