N. B. Pugacheva, N. S. Michurov, T. M. Bykova
THE STRUCTURE AND PROPERTIES OF THE 30Al-70SiC METAL MATRIX COMPOSITE MATERIAL
DOI: 10.17804/2410-9908.2015.6.006-018 The paper presents the results of studying the structure of cylindrical workpieces made of a composite material with an aluminum-alloy matrix and silicon carbide particles as a filler. It is shown that, for the material to be highly filled with a reinforcing agent, particles of two standard sizes are used, namely, 1 to 5 µm and 15 to 20 µm, the particles being shaped mainly as irregular prisms. The studied metal matrix composite is characterized by the value of the thermal coefficient of linear expansion of 11.5×10-6 K-1 in the range between 20 °C and 100 °C, heat conductivity of 193 W/m∙K, density of 2.92 g/cm3, hardness of 95 HV 0.2, and an elastic modulus of 112 GPa. Strong adhesive interaction between the metal matrix and the SiC filler particles has been revealed, which manifests itself in the nature of specimen ruptures after tensile testing.
Keywords: composite material, metal matrix, filler, hardness, heat conductivity, density, linear expansion, fracture References:
- Kreider K. Kompozitsionnye materialy s metallicheskoy matritsei. T. 4 [Metal Matrix Composite Materials, vol. 4]. Мoscow, Mashinostroenie Publ., 1978, 503 p. (In Russian).
- Evdokimov I.A., Prusov E.S., Kireev A.V. Frictional metal matrix composite materials modified with carbon nanostructures, based on aluminum and its alloys, with high mechanical and oper[1]ational properties. Polzunovskiy Almanakh, 2010, no. 2, pp. 264–268. (In Russian).
- Gulbin V., Popov V., Sevostianov I. Metal matrix composites hardened by highly consistent nanopowders. Nanoindustriya, no. 1, 2007, pp. 16–19. (In Russian).
- Popov V.A., Kobelev A.G., Chernyshev V.N. Nanoporoshki v proizvodstve kompozitov [Nanopowders in the Production of Composites]. M., Intermet Inzhiniring, 2007, 336 p. (In Russian).
- Vishnyakov L.R., Moroz V.P., Romashko I.M., Vishnyakova E.L., Yaremenko O.P. Production of composite materials with an aluminum matrix and some carbide and oxide fillers. Kompozity i nanostruktury, 2013, no. 1, pp. 37–45. (In Russian).
- Fernández R., González-Doncel G. Understanding the creep fracture behavior of aluminum alloys and aluminum alloy metal matrix composites. Materials Science and Engineering: A, 2011, vol. 528, iss. 28, pp. 8218–8225. DOI: 10.1016/j.msea.2011.07.027.
- Su Y., Ouyang Q., Zhang W., Li Zh., Guo Q., Fan G., Zhang D. Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites. Materials Science and Engineering: A, 2014, vol. 597, pp. 359–369. DOI: 10.1016/j.msea.2014.01.024.
- ZHAO Long-zhi, ZHAO Ming-juan, YAN Hong, CAO Xiao-ming, ZHANG Jin-song. Mechanical behavior of SiC foam-SiC particles/Al hybrid composites. Transactions of Nonferrous Metals Society of China, 2009, vol. 19, suppl. 3, pp. s547–s551. DOI: 10.1016/S1003-6326(10)60106-9.
- Ortega-Celaya F., Pech-Canul M.I., Lopes-Cuevars J., Rendon-Angeles J.C., Pech-Canul M.A. Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp. Journal of Materials Processing Technology, 2007, vol. 183, iss. 2–3, pp. 368–373. DOI: 10.1016/j.jmatprotec.2006.10.029.
- Nishchev K.N., Novopoltsev M.I., Fomin N.E., Yudin V.A., Shchetanov B.V., Eliseev V.V., Emikh L.A. Studying the physical properties of an AlSiC metal matrix composite material. Izvestiya vysshykh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki, 2011, no. 4, pp. 78–85. (In Russian).
- Pugacheva N.B., Bykova T.M., Trushina E.B. The steel-basis structure influence on the diffuzion boride coatings structure and properties. Uprochnyayushchie tekhnologii i pokrytiya, 2013, no. 4, pp. 3–7. (In Russian).
- Konovalov A.V., Smirnov A.S. Experimental base and methods for identifying the constitutive equations of elastic-viscous-plastic medium. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 2010, vol. 9, pp. 1–4. (In Russian). Available at: http://chemphys.edu.ru/media/published/028.pdf (accessed 20.06.2015)
- Smirnov A.S., Konovalov A.V., Muizemnek O.Yu. Modelling and Simulation of Strain Resistance of Alloys Taking into Account Barrier Effects. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 1, pp. 61–72. DOI: 10.17804/2410-9908.2015.1.061-072. Available at: http://dream-journal.org/issues/2015-1/2015-1_18.html (accessed: 18.09.2015).
- Vichuzhanin D.I. Khotinov V.A. Smirnov S.V. The Effect of the Stress State on the Ultimate Plasticity of Steel X80. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 1, pp. 73–89. DOI: 10.17804/2410-9908.2015.1.073-089. Available at: http://dream-journal.org/issues/2015-1/2015-1_21.html.
- Portnoy K.N., Salibekov S.E., Svetlov I.L. Struktura i svoistva kompozitsionnykh materialov [The Structure and Properties of Composite Materials]. М, Mashinostroenie Publ., 1979, 255 p. (In Russian).
- Grachev S.V., Baraz V.R., Bogatov A.A., Shveikin V.P. Fizicheskoe metallovedenie [Physical Metallography]. Ekaterinburg, UGTU–UPI Publ., 2009, 448 p. (In Russian).
- Belyaev A.I. Metallurgiya legkikh metallov [Metallurgy of Light Metals]. M., Metallurgiya Publ., 1970, 368 p. (In Russian).
- Chirkin V.S. Teplofizicheskie svoistva materialov dlya yadernoy promyshlennosti [Thermalphysic Properties of Materials for Nuclear Industry]. M., Atomizdat Publ., 1978, 485 p. (In Russian).
Article reference
Pugacheva N. B., Michurov N. S., Bykova T. M. The Structure and Properties of the 30al-70sic Metal Matrix Composite Material // Diagnostics, Resource and Mechanics of materials and structures. -
2015. - Iss. 6. - P. 6-18. - DOI: 10.17804/2410-9908.2015.6.006-018. -
URL: http://eng.dream-journal.org/issues/2015-6/2015-6_56.html (accessed: 11/21/2024).
|