K. A. Merencova, A. V. Telegin, Yu. P. Sukhorukov , I. D. Lobov, S. V. Naumov, S. S. Dubinin, A. P. Nosov
THE KERR EFFECT IN NANOSIZED BiYIG STRUCTURES ON GGG AND YAG SUBSTRATES
DOI: 10.17804/2410-9908.2025.1.044-056 The polar Kerr effect in ultrathin Bi-doped yttrium iron garnet (BiY2Fe5O12) films is studied in the energy range 1.3 eV < E < 4.5 eV in constant external magnetic fields of up to 12 kOe at room temperature. The films with thicknesses ranging from 5 to 55 nm are produced by high-vacuum magnetron sputtering on single crystalline gadolinium-gallium Gd3Ga5O12 (111) and yttrium-gallium Y3Al5O12 (211) garnet substrates. All the films exhibit high structural perfection and significant magneto-optical response. Kerr rotation for the films reaches up to +0.33° in a 2 kOe saturation field. It is shown that a decisive role in the spectral and field dependences of the Kerr effect for the thin-film nanostructures on polished substrates is played by the contribution of reflected light and the magneto-optical properties of the substrate. For example, for the substrates with a polished back side, the Kerr effect is negative and reaches about −0.42°, which is comparable in magnitude with the effect in the films. At the same time, there is practically no Kerr rotation for the substrates with a diffuse scattering back side, and the spectral dependence of the effect for the thin-film nanostructures is close to the dependences for bulk samples of the same composition. The findings can be of interest for specialists in magneto-optics and the synthesis of thin-film magnetic nanostructures based on yttrium iron garnet.
Acknowledgment: The work was performed under the state assignment from the Russian Ministry of Science and Higher Education, themes No 122021000036-3 (Spin) and No 122021000035-6 (Function). The shared research facilities of the IMP UB RAS were used to conduct the X-ray spectroscopic and X-ray diffraction studies of the films. Keywords: Magneto-optical Kerr effect, yttrium iron garnet, nanosized films, interface phenomena, magnetron sputtering References:
- Zvezdin, A.K. and Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials, CRC Press, Boca Raton, 1997, 404 p. DOI: 10.1201/9780367802608.
- Stadler, B.J.H. and Mizumoto, T. Integrated magneto-optical materials and isolators: a review. IEEE Photonics Journal, 2014, 6 (1), 0600215. DOI: 10.1109/JPHOT.2013.2293618.
- Kharratian, S., Urey, H., and Onbaşli, M.C. Advanced materials and device architectures for magnetooptical spatial light modulators. Advanced Optical Materials, 2020, 8 (1), 19013481. DOI: 10.1002/adom.201901381.
- Alisafaee, H. and Ghanaatshoar, M. Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm. Applied Optics, 2012, 51 (21), 5144–5148. DOI: 10.1364/AO.51.005144.
- Telegin, A. and Sukhorukov, Yu. Magnetic semiconductors as materials for spintronics. Magnetochemistry, 2022, 8 (12), 173. DOI: 10.3390/magnetochemistry8120173.
- Jesenska, E., Yoshida, T., Shinozaki, K., Ishibashi, T., Beran, L., Zahradnik, M., Antos, R., Kučera, M., and Veis, M. Optical and magneto-optical properties of Bi substituted yttrium iron garnets prepared by metal organic decomposition. Optical Materials Express, 2016, 6 (6), 1986–1997. DOI: 10.1364/OME.6.001986.
- Wittekoek, S., Popma, T.J.A., Robertson, J.M., and Bongers, P.F. Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV. Physical Review B, 1975, 12 (7), 2777–2788. DOI: 10.1103/PhysRevB.12.2777.
- Hansen, P. and Krumme, J.-P. Magnetic and magneto-optical properties of garnet films. Thin Solid Films, 1984, 114 (1–2), 69–107. DOI: 10.1016/0040-6090(84)90337-7.
- Sumi, S., Awano, H., and Hayashi, M. Interference induced enhancement of magneto-optical Kerr effect in ultrathin magnetic films. Scientific Reports, 2018, 8 (1), 776. DOI: 10.1038/s41598-017-18794-w.
- Zvezdin, A.K., Koptsik, S.V., Krinchik, G.S., Levitin, R.Z., Lyskov, V.A., and Popov, A.I. Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K. JETP Letters, 1983, 37 (7), 393–396.
- Novotný, P., Křižánková, M., and Boháček, P. Investigation of Gd3Ga5O12 by micropolarimetry. Journal of Analytical Sciences, Methods and Instrumentation, 2013, 3 (1), 13–16. DOI: 10.4236/jasmi.2013.31003.
- Mukimov, K.M., Sokolov, B.Yu., and Valiev, U.V. The Faraday effect of rare-earth ions in garnets. Physica Status Solidi (A), 1990, 119 (1), 307–315. DOI: 10.1002/pssa.2211190136.
- Wang, W. Magnetic and magneto-optical properties of Nd3Ga5O12 in high magnetic fields. Journal of Applied Physics, 2007, 102 (6), 063905. DOI: 10.1063/1.2781525.
- Guillot, M., Wei, X., Hall, D., Xu, Y., Yang, J.H., and Zhang, F. Magnetic and magneto-optical properties of neodymium gallium garnet under “extreme” conditions. Journal of Applied Physics, 2003, 93 (10), 8005–8007. DOI: 10.1063/1.1558086.
- Euler, F. and Bruce, J.A. Oxygen coordinates of compounds with garnet structure. Acta Crystallographica, 1965, 19 (6), 971–978. DOI: 10.1107/S0365110X65004747.
- Sizov, F.F. and Ukhanov, Yu.I. Magnitoopticheskie effekty Faradeya i Foigta primenitelno k poluprovodnikam [The Faraday and Voigt Magneto-Optic Effects Applied to Semiconductors]. Naukova Dumka Publ., Kiev, 1979, 178 p. (In Russian).
- Casals, B., Espínola, M., Cichelero, R., Geprägs, S., Opel, M., Gross, R., Herranz, G., and Fontcuberta, J. Untangling the contributions of cerium and iron to the magnetism of Ce-doped yttrium iron garnet. Applied Physics Letters, 2016, 108 (10), 102407. DOI: 10.1063/1.4943515.
- Visnovsky, S., Prosser, V., Krishnan, R., Parizek, V., Nitsch, K., and Svobodova, L. Magnetooptical polar Kerr effect in ferrimagnetic garnets and spinels. IEEE Transactions on Magnetics, 1981, 17 (6), 3205–3210. DOI: 10.1109/TMAG.1981.1061610.
- Berzhansky, V., Mikhailova, T., Shaposhnikov, A., Prokopov, A., Karavainikov, A., Kotov, V., Balabanov, D., and Burkov, V. Magneto-optics of nanoscale Bi:YIG films. Applied Optics, 2013, 52 (26), 6599–6606. DOI: 10.1364/AO.52.006599.
- Franta, D. and Mureșan, M.-G. Wide spectral range optical characterization of yttrium aluminum garnet (YAG) single crystal by the universal dispersion model. Optical Materials Express, 2021, 11 (12), 3930–3945. DOI: 10.1364/OME.441088.
- Veis, M., Lišková, E., Antoš, R., Višňovský, Š., Kumar, N., Misra, D.S., Venkataramani, N., Prasad, S., and Krishnan, R. Polar and longitudinal magneto-optical spectroscopy of bismuth substituted yttrium iron garnet films grown by pulsed laser deposition. Thin Solid Films, 2011, 519 (22), 8041–8046. DOI: 10.1016/j.tsf.2011.06.007.
- Sabbaghi, M., Hanson, G.W., Weinert, M., Shi, F., and Cen, C. Terahertz response of gadolinium gallium garnet (GGG) and gadolinium scandium gallium garnet (SGGG). Journal of Applied Physics, 2020, 127 (2), 025104. DOI: 10.1063/1.5131366.
- Suturin, S.M., Korovin, A.M., Bursian, V.E., Lutsev, L.V., Bourobina, V., Yakovlev, N.L., Montecchi, M., Pasquali, L., Ukleev, V., Vorobiev, A., Devishvili, A., and Sokolov, N.S. Role of gallium diffusion in the formation of a magnetically dead layer at the Y3Fe5O12/Gd3Ga5O12 epitaxial interface. Physical Review Materials, 2018, 2 (10), 104404. DOI: 10.1103/PhysRevMaterials.2.104404.
Article reference
The Kerr Effect in Nanosized Biyig Structures on Ggg and Yag Substrates / K. A. Merencova, A. V. Telegin, Yu. P. Sukhorukov, I. D. Lobov, S. V. Naumov, S. S. Dubinin, A. P. Nosov // Diagnostics, Resource and Mechanics of materials and structures. -
2025. - Iss. 1. - P. 44-56. - DOI: 10.17804/2410-9908.2025.1.044-056. -
URL: http://eng.dream-journal.org/issues/content/article_498.html (accessed: 05/06/2025).
|