Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

L. S. Goruleva, I. I.Obabkov, E. Yu. Prosviryakov

EXACT SOLUTIONS TO THERMAL DIFFUSION EQUATIONS FOR STOKES SLOW FLOWS

DOI: 10.17804/2410-9908.2024.6.241-267

The article considers a class of exact solutions for describing Stokes slow flows of binary fluids. The family of exact solutions is constructed on the basis of the Lin–Sidrov–Aristov ansatz for the velocity field. The velocity field has a wide functional arbitrariness. It depends linearly on two coordinates (horizontal or longitudinal). The coefficients of the linear forms are functions of two variables from the third (vertical or transverse) coordinate and time. The pressure field, the temperature field, and the field of dissolved substance concentration are quadratic forms. In other words, the study takes into account not only horizontal gradients, but also the curvature of the hydrodynamic fields. The constructed exact solution describes thermal diffusion with both Soret and Dufour cross dissipative effects. A system of equations for describing unsteady flows is derived, which consists of heat conduction equations and gradient equations. Formulas of hydrodynamic fields are given to describe the Stokes slow steady-state flow of a binary fluid.

Keywords: exact solution, binary fluid, convection, diffusion, thermal diffusion, Stokes approximation, Lin–Sidorov–Aristov class

References:

  1. Gershuni, G.Z. and Zhukhovitskii, E.M. Convective Stability of Incompressible Liquid, Wiley, Keter Press, Jerusalem, 1976.
  2. Gershuni, G.Z., Zhukhovitskii, E.M., and Nepomnyashchii, A.A. Ustoychivost konvektivnykh techeniy [Stability of Convective Flows]. Moscow, Nauka Publ., 1989, 318 p. (In Russian).
  3. Getling, A.V. Formation of spatial structures in Rayleigh–Bénard convection. Soviet Physics Uspekhi, 1991, 34 (9), 737–776. DOI: 10.1070/PU1991v034n09ABEH002470.
  4. Andreev, V.K., Gaponenko, Ya.A., Goncharova, O.N., and Pukhnachev, V.V. Mathematical Models of Convection, De Gruyter, Berlin, Boston, 2012, 417 p. DOI: 10.1515/9783110258592.
  5. Aristov, S.N. and Schwarz, K.G. Vikhrevye techeniya v tonkikh sloyakh zhidkosti [Vortex Flows in Thin Layers of Liquid]. VyatGU Publ., Kirov, 2011, 206 p. (In Russian).
  6. Ershkov, S.V., Prosviryakov, E.Yu. Burmasheva, N.V., and Christianto, V. Solving the hydrodynamical system of equations of inhomogeneous fluid flows with thermal diffusion: a review. Symmetry, 2023, 15, 1825. DOI: 10.3390/sym15101825.
  7. Bulgakov, S.N. Issledovaniye roli khalinnykh faktorov v formirovanii tsirkulyatsii i struktury vod Chernogo morya [Investigation of the Role of Chaline Factors in the Formation of the Circulation and Structure of the Black Sea: Cand. Thesis]. Sevastopol, 1986, 155 p. (In Russian).
  8. Bulgakov, S.N. and Korotaev, G.K. An analytical model of jet circulation in closed reservoirs. Morskoy Gidrofizicheskiy Zhurnal, 1987, 3, 434–446. (In Russian).
  9. Aristov, S.N. and Shvarts, K.G. On the influence of salinity exchange on the circulation of a fluid in an enclosed basin. Soviet Journal of Physical Oceanography, 1991, 2, 293–298. DOI: 10.1007/BF02346081.
  10. Burmasheva, N.V. and Prosviryakov, E.Yu. Exact solution for Couette-type steady convective concentration flows. Journal of Applied Mechanics and Technical Physics, 2021, 62 (7), 155–166. DOI: 10.1134/S0021894421070051.
  11. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F. Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid. Vychislitelnaya Mekhanika Sploshnykh Sred, 2015, 8 (4), 445–456. (In Russian). DOI: 10.7242/1999-6691/2015.8.4.38.
  12. Ryzhkov, I.I. Termodiffuziya v smesyakh: uravneniya, simmetrii, resheniya i ikh ustoychivost [Thermal Diffusion in Mixtures: Equations, Symmetries, Solutions and their Stability]. Izd-vo SO RAN Publ., Novosibirsk, 2013, 200 p. (In Russian).
  13. Aristov, S.N. and Prosviryakov, E.Yu. A new class of exact solutions for three-dimensional thermal diffusion equations. Theoretical Foundations of Chemical Engineering, 2016, 50 (3), 286–293. DOI: 10.1134/S0040579516030027.
  14. Prosviryakov, E.Yu., Ledyankina, O.A., and Goruleva, L.S. Exact solutions to the Navier–Stokes equations for describing the flow of multicomponent fluids with internal heat generation. Russian Aeronautics, 2024, 67 (1), 60–69. DOI: 10.3103/S1068799824010070.
  15. Koroleva, L.F., Savrai, R.A., Prosviryakov, E.Yu., Kostarev, V.A., Pavlyshko, S.V., and Kostarev, P.V. The effect of abrasive additives on the tribotechnical properties of lubricants for the wheel-rail system. Diagnostics, Resource and Mechanics of materials and structures, 2023, 1, 54–64. DOI: 10.17804/2410-9908.2023.1.054-064. Available at: http://dream-journal.org/issues/2023-1/2023-1_390.html
  16. Prosviryakov, E.Yu., Mikhailov S.A., Ledyankina, O.A., and Goruleva, L.S. Exact solutions to the Navier–Stokes equations with the Boussinesq approximation for describing binary fluid flows. Russian Aeronautics, 2023, 66 (3), 500–509. DOI: 10.3103/S106879982303011X.
  17. Goruleva, L.S. and Prosviryakov, E.Yu. A new class of exact solutions to magnetohydrodynamics equations for describing convective flows of binary fluids. Technical Physics, 2023, 68 (10), 292–301.
  18. Bashurov, V.V. and Prosviryakov, E.Yu. Steady thermo-diffusive shear Couette flow of incompressible fluid. Velocity field analysis. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskiye Nauki, 2021, 25 (4), 781–793. DOI: 10.14498/vsgtu1878.
  19. Burmasheva, N.V. and Prosviryakov, E.Yu. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect. Izvestiya Irkutskogo Gosudarstvennogo Universiteta, Seriya Matematika, 2021, 37, 17–30. DOI: 10.26516/1997-7670.2021.37.17.
  20. Burmasheva, N.V. and Prosviryakov, E.Yu. On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect. Journal of King Saud University – Science, 2020, 32 (8), 3364–3371. DOI: 10.1016/j.jksus.2020.09.023.
  21. Ershkov, S., Burmasheva, N., Leshchenko, D.D., and Prosviryakov, E.Yu. Exact solutions of the Oberbeck–Boussinesq equations for the description of shear thermal diffusion of Newtonian fluid flows. Symmetry, 2023, 15, 1730. DOI: 10.3390/sym15091730.
  22. Burmasheva, N.V. and Prosviryakov, E.Yu. Influence of the Dufour effect on shear thermal diffusion flows. Dynamics, 2022, 2 (4), 367–379. DOI: 10.3390/ dynamics2040021.
  23. Ostroumov, G.A. Free convection under the condition of the internal problem. Technical Memorandum Ser., 1407, National Advisory Committee for Aeronautics, Washington, 1958.
  24. Birikh, R.V. Thermocapillary convection in a horizontal layer of liquid. Journal of Applied Mechanics and Technical Physics, 1966, 7 (3), 43–44. DOI: 10.1007/bf00914697.
  25. Shliomis, M.I. and Yakushin, V.I. The convection in a two-layer binary system with evaporation. Uchenye Zapiski Permskogo Gosuniversiteta, Seriya Gidrodinamika, 1972, 4, 129–140. (In Russian).
  26. Gershuni, G.Z. On the stability of plane convective motion of a fluid. Zh. Tekh. Fiz., 1953, 23 (10), 1838–1844. (In Russian).
  27. Batchelor, G.K. Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Quart. Appl. Math., 1954, 12 (3), 209–233. DOI: 10.1090/qam/64563.
  28. Schwarz, K.G. Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries. Fluid Dynamics, 2014, 49 (4), 438–442. DOI: 10.1134/S0015462814040036.
  29. Knyazev, D.V. Two-dimensional flows of a viscous binary fluid between moving solid boundaries. Journal of Applied Mechanics and Technical Physics, 2011, 52 (2), 212–217. DOI: 10.1134/ S0021894411020088.
  30. Aristov, S.N. and Prosviryakov, E.Yu. On laminar flows of planar free convection. Nelineynaya Dinamika, 2013, 9 (4), 651–657. (In Russian).
  31. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F. Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows. Theoretical Foundations of Chemical Engineering, 2016, 50 (2), 132–141. DOI: 10.1134/S0040579516020019.
  32. Goruleva, L.S., Obabkov, I.I., and Prosviryakov, E.Yu. Exact solutions to the Oberbeck–Boussinesq equations for convective Stokes flows. Diagnostics, Resource and Mechanics of materials and structures, 2024, 2, 36–49. DOI: 10.17804/2410-9908.2024.2.036-049. Available at: http://dream-journal.org/issues/2024-2/2024-2_437.html
  33. Aristov, S.N. and Shvarts, K.G. Convective heat transfer in a locally heated plane incompressible fluid layer. Fluid Dynamics, 2013, 48, 330–335. DOI: 10.1134/S001546281303006X.
  34. Privalova, V.V. and Prosviryakov, E.Yu. Steady convective Couette flow for quadratic heating of the lower boundary fluid layer. Nelineynaya Dinamika, 2018, 14 (1), 69–79. (In Russian). DOI: 10.20537/nd1801007.
  35. Vlasova, S.S. and Prosviryakov, E.Yu. Parabolic convective motion of a fluid cooled from below with the heat exchange at the free boundary. Russian Aeronautics, 2016, 59 (4), 529–535. DOI: 10.3103/S1068799816040140.
  36. Aristov, S.N., Privalova, V.V., and Prosviryakov, E.Yu. Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer. Nelineynaya Dinamika, 2016, 12 (2), 167–178. (In Russian). DOI: 10.20537/nd1602001.
  37. Aristov, S.N., Privalova, V.V., and Prosviryakov, E.Yu. Planar linear Bénard-Rayleigh convection under quadratic heating of the upper boundary of a viscous incompressible liquid layer. Vestnik Kazanskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. A.N. Tupoleva, 2015, 2, 6–13. (In Russian).
  38. Aristov, S.N. and Prosviryakov, E.Yu. Exact solutions of thermocapillary convection during localized heating of a flat layer of viscous incompressible liquid. Vestnik Kazanskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. A.N. Tupoleva, 2014, 3, 7–12. (In Russian).
  39. Aristov, S.N. and Prosviryakov, E.Yu. Exact solutions of thermocapillary convection for localized heating of a flat viscous incompressible layer. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2013, 3, 34–45. (In Russian).
  40. Aristov, S.N. and Prosviryakov, E.Yu. On one class of analytic solutions of the stationary axisymmetric convection Bénard–Maragoni viscous incompressible fluid. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2013, 3 (32), 110–118. (In Russian). DOI: 10.14498/vsgtu1205.
  41. Privalova, V.V. and Prosviryakov, E.Yu. Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2018, 22 (3), 532–548. DOI: 10.14498/vsgtu1638.
  42. Lin, C.C. Note on a class of exact solutions in magnetohydrodynamics. Archive for Rational Mechanics and Analysis, 1957, 1, 391–395. DOI: 10.1007/BF00298016.
  43. Sidorov, A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. Journal of Applied Mechanics and Technical Physics, 1989, 30 (2), 197–203. DOI: 10.1007/BF00852164.
  44. Aristov, S.N. Vikhrevye techeniya v tonkikh sloyakh zhidkosti [Eddy Currents in Thin Liquid Layers: Synopsis of Doctoral Thesis]. Vladivostok, 1990, 303 p. (In Russian).
  45. Burmasheva, N.V. and Prosviryakov, E.Yu. Exact solutions to the Navier–Stokes equations for describing the convective flows of multilayer fluids. Rus. J. Nonlin. Dyn., 2022, 18 (3), 397–410. DOI: 10.20537/nd220305.
  46. Burmasheva, N.V. and Prosviryakov, E.Yu. Exact solutions to the Navier–Stokes equations describing stratified fluid flows. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2021, 25 (3), 491–507. (In Russian). DOI: 10.14498/vsgtu1860.
  47. Prosviryakov, E.Yu. New class of exact solutions of Navier-Stokes equations with exponential dependence of velocity on two spatial coordinates. Theoretical Foundations of Chemical Engineering, 2019, 53 (1), 107–114. DOI: 10.1134/S0040579518060088.
  48. Baranovskii, E.S., Burmasheva, N.V., and Prosviryakov, E.Yu. Exact solutions to the Navier–Stokes equations with couple stresses. Symmetry, 2021, 13 (8), 1355. DOI: 10.3390/sym13081355.
  49. Privalova, V.V. and Prosviryakov, E.Yu. A new class of exact solutions of the Oberbeck–Boussinesq equations describing an incompressible fluid. Theoretical Foundations of Chemical Engineering, 2022, 56 (3), 331–338. DOI: 10.1134/S0040579522030113.
  50. Goruleva, L.S., Prosviryakov, E.Yu. A new class of exact solutions to the Navier–Stokes equations with allowance for internal heat release. Optics and Spectroscopy, 2022, 130 (6), 365–370. DOI: 10.1134/S0030400X22070037.
  51. Andreev, V.K. and Efimova, M.V. The structure of a two-layer flow in a channel with radial heating of the lower substrate for small Marangoni numbers. Journal of Applied and Industrial Mathematics, 2024, 18 (2), 179–191. DOI: 10.1134/S1990478924020017.
  52. Andreev, V.K. Thermocapillary convection of immiscible liquid in a three-dimensional layer at low Marangoni numbers. Journal of Siberian Federal University. Mathematics and Physics, 2024, 17 (2), 195–206.
  53. Andreev, V.K. and Pianykh, A.A. Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel. Journal of Siberian Federal University. Mathematics and Physics, 2023, 16 (1), 48–55.
  54. Andreev, V.K. and Lemeshkova, E.N. Thermal convection of two immiscible fluids in a 3D channel with a velocity field of a special type. Fluid Dynamics, 2023, 58 (7), 1246–1254. DOI: 10.1134/s0015462823602176.
  55. Andreev, V.K. and Uporova, A.I. Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe. Journal of Siberian Federal University. Mathematics and Physics, 2023, 16 (1), 5–16.
  56. Andreev, V.K. and Uporova, A.I. On a spectral problem for convection equations. Journal of Siberian Federal University. Mathematics and Physics, 2022, 15 (1), 88–100. DOI: 10.17516/1997-1397-2022-15-1-88-100.
  57. Andreev, V.K. and Stepanova, I.V. Inverse problem for source function in parabolic equation at Neumann boundary conditions. Journal of Siberian Federal University. Mathematics and Physics, 2021, 14 (4), 445–451. DOI: 10.17516/1997-1397-2021-14-4-445-451.
  58. Andreev, V.K. and Sobachkina, N.L. Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface. Journal of Siberian Federal University. Mathematics and Physics, 2021, 14 (4), 507–518. DOI: 10.17516/1997-1397-2021-14-4-507-518.
  59. Lemeshkova, E. and Andreev, V. On the asymptotic behavior of inverse problems for parabolic equation. Journal of Elliptic and Parabolic Equations, 2021, 7 (2), 905–921. DOI: 10.1007/s41808-021-00127-8.
  60. Andreev, V.K. Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet. Journal of Siberian Federal University. Mathematics and Physics, 2021, 14 (2), 204–212. DOI: 10.17516/1997-1397-2021-14-2-204-212.


PDF      

Article reference

Goruleva L. S., I.Obabkov I., Prosviryakov E. Yu. Exact Solutions to Thermal Diffusion Equations for Stokes Slow Flows // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 241-267. -
DOI: 10.17804/2410-9908.2024.6.241-267. -
URL: http://eng.dream-journal.org/issues/content/article_481.html
(accessed: 01/21/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru