Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. S. Frolov, I. V. Fedotov

COMPARISON OF RING TENSION AND COMPRESSION TEST RESULTS FOR MATERIALS WITH LOW DUCTILITY

DOI: 10.17804/2410-9908.2024.6.062-090

In this paper, a low-ductility material (AK12 alloy) being used as an example, the stress-strain state of ring specimens is analyzed by digital image correlation and finite element modeling with the use of the most widespread tests, namely diametral compression and tension on semicircular mandrels. The calculations and experiments show that, regardless of the test type and deformation stage, the achievement of critical local strain (4.0‒4.2% for the material under study) can be taken as the limit state for various types and configurations of tests. The results obtained from different types of testing are compared and analyzed in terms of criteria for permanent diametral strain.

Acknowledgment: The study was performed under the state assignment for the Kurchatov Institute National Research Center.

Keywords: testing of ring specimens, plasticity, AK12, finite element method, digital image correlation

References:

  1. Barsanova, S.V., Kozlov, A.V., and Shilo, O.B. The influence of irradiation with fast neutrons on the change in the mechanical properties of austenitic steels EK–164 and ChS–68. Voprosy Atomnoy Nauki i Tekhniki. Seriya Materialovedenie i novye materialy, 2018, 96 (5), 4–12. (In Russian).
  2. Grachev, A.F., Zherebtsov, A.A., Zabudko, L.M., Zvir, E.A., Kryukov, F.N., Nikitin, O.N., Skupov, M.V., Ivanov, Yu.A., and Porollo, S.I. Results of investigations of BREST-type reactor fuel rods with mixed uranium-plutonium nitride fuel, irradiated in BOR–60 and BN–600. Atomic Energy, 125, 314–321 (2019). DOI: 10.1007/s10512-019-00487-4.
  3. Kim, K.-T. The effect of peak cladding temperature occurring during interim-dry storage on transport-induced cladding embrittlement. Nuclear Engineering and Technology, 2020, 52 (7), 1486–1494. DOI: 10.1016/j.net.2019.12.030.
  4. Yook, H., Shirvan K., Phillips, B., and Lee, Y. Post-LOCA ductility of Cr-coated cladding and its embrittlement limit. Journal of Nuclear Materials, 2022, 558, 153354, 1–11. DOI: 10.1016/j.jnucmat.2021.153354.
  5. Markelov, V.A., Malgin, A.G., Novikov, V.V., and Gusev, A.Yu. Providing durability in a loca design basis accident of fuel rod claddings made of electrolytic zirconium E110 alloy. Voprosy Atomnoy Nauki i Tekhniki. Seriya Materialovedenie i Novye Materialy, 2017, 4 (91), 32–46. (In Russian).
  6. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., and Fedotov, I.V. Long-term high-temperature exposure effects on mechanical properties and structure of the 42XNM alloy after neutron irradiation in the VVER–1000. Part 1. Mechanical tests. Voprosy Materialovedeniya, 2023, 113 (1), 134–149. (In Russian). DOI: 10.22349/1994-6716-2023-113-1-134-149.
  7. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Fedotov, I.V., and Safonov, D.V. Long-term high-temperature exposure effects on mechanical properties and structure of the 42XNM alloy after neutron irradiation in the VVER–1000. Part 2. Structural studies. Voprosy Materialovedeniya, 2023, 113 (1), 150–173. (In Russian). DOI: 10.22349/1994-6716-2023-113-1-150-173.
  8. Kulakov, G.V., Konovalov, Yu.V., Kosaurov, A.A., Peregud, M.M., Nikulina, A.B., Shishin, V.Yu., Ovchinnikov, V.A., and Sheldyakov, A.A. Behavior of modified zirconium-alloy fuel-element cladding under irradiation. Atomic Energy, 2018, 123, 399–405. DOI: 10.1007/s10512-018-0359-8.
  9. Leontieva-Smirnova, M.V., Kalin, B.A., Morozov, E.M., Kostyukhina, A.V., Fedotov, P.V., and Taktashev, R.N. Methodical features of tensile testing of ring samples. Inorganic Materials: Applied Research, 2020, 11, 731–738. DOI: 10.1134/S2075113320030302.
  10. Karagergi, R.P., Konovalov, A.V., Evseev, M.V., and Kozlov, A.V. Construction of a strain-hardening diagram to analyze the state of stress in the fuel-element cladding material. Russian Metallurgy, 2023, 1528–1534. DOI: 10.1134/S0036029523100117.
  11. Karagergi, R.P., Evseev, M.V., and Kozlov, A.V. Analytical method for determining the initial effective length of the working part of the annular sample under tension. Voprosy Atomnoy Nauki i Tekhniki. Seriya Materialovedenie i Novye Materialy, 2019, 5 (101), 13–24. (In Russian).
  12. Gurovich, B.A., Frolov, A.S., and Fedotov, I.V. Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500–1100)°C. Nuclear Engineering and Technology, 2020, 52 (6), 1213–1221. DOI: 10.1016/j.net.2019.11.019.
  13. Frolov, A.S., Fedotov, I.V., and Gurovich, B.A. Evaluation of the true-strength characteristics for isotropic materials using ring tensile test. Nuclear Engineering and Technology, 2021, 53 (7), 2323–2333. DOI: 10.1016/j.net.2021.01.033.
  14. Billone, M.C., Burtseva, T.A., and Einziger, R.E. Ductile to brittle transition temperature for high burnup Zircaloy–4 and ZIRLO cladding alloys exposed to simulated drying-storage conditions. Journal of Nuclear Materials, 2013, 433 (1–3), 431–448. DOI: 10.1016/j.jnucmat.2012.10.002.
  15. Chen, H. and Cai, L. Unified ring-compression model for determining tensile properties of tubular materials. In: Materials Today Communications, 2017, 13, 210–220. DOI: 10.1016/j.mtcomm.2017.10.006.
  16. Han, G., Cai, L., Bao, C., Liang, B., Lyu, Y., Huang, M., and Liu, X. Novel ring compression test method to determine the stress-strain relations and mechanical properties of metallic materials. Chinese Journal of Mechanical Engineering, 2021, 34 (109), 1–12. DOI: 10.1186/s10033-021-00622-y.
  17. Karagergi, R.P., Kozlov, A.V., Yarkov, V.Yu., Pastukhov, V.I., Barsanova, S.V. Microstructure of fracture surfaces after radial compression of annular specimens made of cladding austenitic steel exposed to damaging dose above 100 dpa. Physics of Metals and Metallography, 2024, 125 (6), 665–672. DOI: 10.1134/S0031918X2460043X.
  18. Polunin, K.K., Bahin, A.N., and Urusov, A.A. Studying fuel clads made of the E110 alloy with a protective coating under conditions typical of a loss-of-coolant accident. Vestnik Nauki, 2019, 11 (2), 105–112. (In Russian).
  19. Nikanorov, S.P., Volkov, M.P., Gurin, V.N., Burenkov, Y.A., Derkachenko, L.I., Kardashev, B.K., Regel, L.L., and Wilcox, W.R. Structural and mechanical properties of Al-Si alloys obtained by fast cooling of a levitated melt. Materials Science and Engineering: A., 2005, 390 (1–2), 63–69. DOI: 10.1016/j.msea.2004.07.037.
  20. Beck, P.M., Hayne, M.L., Liu, C., Valdez, J., Nizolek, T., Briggs, S.A., Maloy, S.A., Saleh, T.A., and Eftink, B.P. Mandrel diameter effect on ring-pull testing of nuclear fuel cladding. Journal of Nuclear Materials, 2024, 596, 155087. DOI: 10.1016/j.jnucmat.2024.155087.
  21. Blaber, J., Adair, B., and Antoniou, A. Ncorr: open-source 2D digital image correlation Matlab software. Experimental Mechanics, 2015, 55 (6), 1105–1122. DOI: 10.1007/s11340-015-0009-1.
  22. Nemat-Alla, M. Reproducing hoop stress–strain behavior for tubular material using lateral compression test. International Journal of Mechanical Sciences, 2003, 45 (4), 605–621. DOI: 10.1016/S0020-7403(03)00115-2.
  23. Birger, I.A., Panovko, Y.G., eds. Prochnost, ustoychivost, kolebaniya: spravochnik [Strength, Stability, Vibrations: Handbook in 3 Vols. Vol. 1]. Mashinostroenie Publ., Moscow, 1968, 821 p. (In Russian).
  24. Buzyurkin, A.E., Gladky, I.L., and Kraus, E.I. Determination of parameters of the Johnson-Cook model for the description of deformation and fracture of titanium alloys. Journal of Applied Mechanics and Technical Physics, 2015, 56, 330–336. DOI: 10.1134/S0021894415020194.
  25. Shrivastava, S., Ghosh, C., and Jonas, J.J. A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments. Philosophical Magazine A., 2012, 92 (7), 779–786. DOI: 10.1080/14786435.2011.634848.
  26. Kolmogorov, V.L., Bogatov, A.A., Migachev, B.A., Zudov, E.G., Freydenzon, Yu.E., and Freydenzon, M.E. Plastichnost i razrushenie [Plasticity and Fracture]. Metallurgiya Publ., Moscow, 1977.
  27. Wu, H., Udagawa, Y., Narukawa, T., and Amaya, M. Crack formation in cladding under LOCA quench conditions. Nuclear Engineering and Design, 2016, 303, 25–30. DOI: 10.1016/j.nucengdes.2016.03.033.
  28. Kudiiarov, V., Sakvin, I., Syrtanov, M., Slesarenko, I., and Lider, A. Hydride rim formation in E110 zirconium alloy during gas-phase hydrogenation. Metals, 2020, 10 (2), 247. DOI: 10.3390/met10020247.
  29. Pastukhov, V.I., Panchenko, V.L., Portnykh, I.A., Averin, S.A., and Kozlov, A.V. Non-uniformity of radiation-induced porosity of fuel pin cladding made of 16Cr-19Ni-2Mo-2Mn-Nb-Ti-V-P-B austenitic steel. Voprosy Atomnoy Nauki i Tekhniki. Seriya Materialovedenie i Novye Materialy, 2018, 96 (5), 13–22. (In Russian).
  30. Grachev, A.F., Zherebtsov, A.A., Zabudko, L.M., Zvir, E.A., Kryukov, F.N., Nikitin, O.N., Skupov, M.V., Ivanov, Yu.A., and Porollo S.I. Results of investigations of BREST-type reactor fuel rods with mixed uranium-plutonium nitride fuel, irradiated in BOR–60 and BN–600. Atomic Energy, 2019, 125, 314–321. DOI: 10.1007/s10512-019-00487-4.
  31. Kitano, K., Losin, C., Arborelius, J., and Limbäck, M. Study on incipient cracks at inner surface of cladding liner after high power irradiation test. Journal of Nuclear Science and Technology, 2006, 43 (9), 1015–1020. DOI: 10.1080/18811248.2006.9711190.


PDF      

Article reference

Frolov A. S., Fedotov I. V. Comparison of Ring Tension and Compression Test Results for Materials with Low Ductility // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 62-90. -
DOI: 10.17804/2410-9908.2024.6.062-090. -
URL: http://eng.dream-journal.org/issues/content/article_465.html
(accessed: 01/21/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru