Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

N. B.Pugacheva, A. V.Nokhrina, E. I.Senaeva, R. A.Savrai

MECHANICAL PROPERTIES OF AN Fe–Ti–Ni–B–C SHS COMPOSITE

DOI: 10.17804/2410-9908.2024.4.057-069

The paper studies the structure, mechanical properties and wear resistance of a composite produced by self-propagating high-temperature synthesis (SHS) with an average chemical composition, wt%: 35.47 ± 1.5 Fe; 24.08 ± 1.4 Ti; 13.99 ± 0.5 Ni; 17.91 ± 0.4 B; 8.54 ± 0.5 C. Testing has revealed that the composite has wear resistance on a level with one of the Hardox 500 wear-resistant steels. The composite is characterized by a wide range of values of transverse bending strength Rbm30 from 200 to 800 MPa. Steel 40X shows a bending strength Rbm30 of 1590 MPa, and the values of this characteristic for the Hardox 500 steel range between 2970 and 3020 MPa. The composite has low impact strength values KCU = 0.02 MJ/m2, compared with KCU = 0.35 MJ/m2 for steel 40X and KCU = 1.59 MJ/m2 for Hardox 500. The Fe–Ni–Ti–C–B SHS composite should not be used for bending parts and those experiencing shock loads; however, it suits perfectly for protecting the surfaces of parts subject to intense abrasive wear.

Acknowledgments: The work was performed within the framework of the state assignment of the IMASH Ural Branch of the Russian Academy of Sciences on the topic No. 124020700063-3.

Keywords: self-propagating high-temperature synthesis (SHS), SHS composite, microstructure, abrasive wear resistance, bending strength, impact strength

References:

  1. Amosov, A.P., Borovinskaya, I.P., and Merzhanov, A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder Technology of Self-Propagating High-Temperature Synthesis of Materials]. Mashinostroenie–1 Publ., Moscow, 2007, 472 p. (In Russian).
  2. Merzhanov, A.G. Tverdoplamennoe gorenie [Solid-Flame Combustion]. ISMAN Publ., Chernogolovka, 2000, 238 p. (In Russian).
  3. Samorasprostranyayushchiysya vysokotemperaturnyi sintez: teoriya i praktika [Self-Propagating High-Temperature Synthesis, Theory and Practice: Collection of Articles, ed. by A.E. Sychev]. Territoriya Publ., Chernogolovka, 2001, 432 p. (In Russian).
  4. Pugacheva, N.B., Nikolin, Yu.V., Senaeva, E.I., and Malygina, I.Yu. Structure of Fe–Ni–Ti–C–B SHS composites. Physics of Metals and Metallography, 2019, 120 (11), 1078–1084. DOI: 10.1134/S0031918X19110139.
  5. Pugacheva, N.B., Nikolin, Yu.V., Bykova, T.M., and Senaeva, E.I. Structure and properties of a SHS Cu–Ti–C–B composite. Physics of Metals and Metallology, 2022, 123 (1), 43–49. DOI: 10.1134/S0031918X22010100.
  6. Mofa, N.N., Sadykov, B.S., Bakkara, A.E., Zhuranova, G.S., and Mansurov, Z.A. Production of metal-ceramic SHS composites based on mechanochemically treated systems. Gorenie i Plazmokhimiya, 2018, 16 (3–4), 159–171. (In Russian).
  7. Sychev, A.E., Kamynina, O.K., Umarov, L.M., Shchukin, A.S., and Zhidkov, M.V. SHS of composite materials based on Ti-Co. Fundamentalnye Issledovaniya, 2014, 12, 1912–1916. (In Russian).
  8. Xinghong, Z., Qiang, X., Jiecai, H., and Kvanin, V.L. Self-propagating high temperature combustion synthesis of TiB/Ti composites. Materials Science and Engineering: A, 2003, 348 (1–2), 41–46. DOI: 10.1016/S0921-5093(02)00635-4.
  9. Fan, Q., Chai, H., and Jin, Z. Role of iron addition in the combustion synthesis of TiC–Fe cermet. Journal of Materials Science, 1997, 32, 4319–4323. DOI: 10.1023/A:1018667722150.
  10. LaSalvia, J.C., Meyers, M.A. Combustion synthesis in the Ti–C–Ni–Mo system. Part II. Analysis. Metallurgical and Materials Transactions A, 1995, 26, 3011–3019. DOI: 10.1007/BF02669657.
  11. Zhang, X., He, X., Han, J., Qu, W., Kvalin, V.L. Combustion synthesis and densification of large-scale TiC–xNi cermets. Materials Letters, 2002, 56 (3), 183–187. DOI: DOI: 10.1016/S0167-577X(02)00437-8.
  12. Zhang, W., Zhang, X., Wang, J., and Hong, C. Effect of Fe on the phases and microstructure of TiC–Fe cermets by combustion synthesis/quasi-isostatic pressing. Materials Science and Engineering: A, 2004, 381 (1–2), 92–97. DOI: 10.1016/j.msea.2004.04.026.
  13. Shcherbakov, V.A., Gryadunov, A.N., Barinov, Yu.N., and Botvina, O.I. Synthesis and properties of composites based on zirconium and chromium borides. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsionalnye Pokrytiya, 2018, 1, 18–25. (In Russian). DOI: 10.17073/1997-308X-2018-1-18-25.
  14. Manucharyan, A.G., Kikanyan, S.L., and Khachatryan, E.A. Corrosion resistance of a Si3N4–30%TiN metal-ceramic SHS composite to the sulfuric-acid–phosphoric-acid–water triple mixture Molodoy Uchenyi, 2014, 2 (61), 260–263.
  15. Nikolin, Yu.V., Matevosyan, M.B., Kochugov, S.P., and Pugacheva, N.B. RF Patent No. 2680489, Byull. Izobret. No. 6, 2019.


PDF      

Article reference

Mechanical Properties of An Fe–ti–ni–b–c Shs Composite / N. B.Pugacheva, A. V.Nokhrina, E. I.Senaeva, R. A.Savrai // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 4. - P. 57-69. -
DOI: 10.17804/2410-9908.2024.4.057-069. -
URL: http://eng.dream-journal.org/issues/content/article_454.html
(accessed: 10/31/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru