A. P. Nosov, I. V. Gribov, N. A. Moskvina, A. V. Druzhinin, S. S. Dubinin
SENSORS OF LOW-FREQUENCY MAGNETIC FIELDS BASED ON FeGa-FeCoGa/METGLAS/QUARTZ STRUCTURES
DOI: 10.17804/2410-9908.2019.6.077-086 The paper experimentally demonstrates the possibility of recording low-frequency (20 Hz to 10 kHz) magnetic fields in laminated structures of the composite magnetostrictive thin-film ferromagnet / piezoelectric / magnetostrictive ferromagnet type. Quartz single crystals are used as the piezoelectric material. The composite thin-film-based magnetostrictive ferromagnet is obtained by pulsed laser deposition of magnetostrictive Fe0.72Ga0.28 or Fe0.62Co0.19Ga0.19 thin-film layers on the surface of Metglas-type amorphous ribbons. The possibility of detecting both dc and ac magnetic fields in the frequency range from 20 Hz to 10 kHz by measuring the magnetoelectric voltage coefficient (MEVC) in laminated structures is demonstrated experimentally. The influence of the composition of the thin film layer on magnetic noise in the frequency range of 0.5 to 14 Hz is studied. It is shown that the deposition of thin films improves neither the maximum value of MEVC nor the coefficient of linearity at “high” (20 to 50 Oe) magnetic fields in the whole frequency range under study. However, the deposition of Fe0.62Co0.19Ga0.19 films enables us to achieve higher coefficients of linearity in the region of zero magnetic fields. Besides, the deposition of thin films increases magnetic noise. The obtained results can be useful in the development of sensors of both dc and ac magnetic fields for nondestructive systems and devices operated at elevated temperatures.
Acknowledgment: The work was performed under the state assignment from the Ministry of Education and Science of Russia, theme Function No. AAAA-A19-119012990095-0. Keywords: magnetic field sensor, amorphous alloy, thin films, magnetoelectric effect, magnetic nondestructive testing References: 1. Srinivasan G. Magnetoelectric composites. Ann. Rev. Mater. Sci., 2010, vol. 40, pp. 153–178. DOI: 10.1146/annurev-matsci-070909-104459.
2. Petrov V.M. and Srinivasan G. Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Phys. Rev. B., 2008, vol. 78, pp. 184421 (8 p.). DOI: 10.1103/PhysRevB.78.184421.
3. Laletin U., Sreenivasulu G., Petrov V.M., Garg T., Kulkarni A.R., Venkataramani N., and Srinivasan G. Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Phys. Rev. B., 2012, vol. 85, pp. 104404 (8 p.). DOI: 10.1103/PhysRevB.85.104404.
4. Tech. Bulletin, ref: 2605SA106192009, Metglas Inc., Conway, SC, 2009.
5. Gribov I.V., Osotov V.I., Nosov A.P., Petrov V.M., Sreenivasulu G., Srinivasan G. Magneto-electric effects in functionally stepped magnetic nanobilayers on ferroelectric substrates: Observation and theory on the influence of interlayer exchange coupling. Journal of Applied Physics, 2014, vol. 115, pp. 193909–193908. DOI: 10.1063/1.4878458.
6. More-Chevalier J., Lüders U., Cibert C., Nosov A., B. Domengès B., Bouregba R., Poullain G. Magnetoelectric coupling in Pb(Zr,Ti)O3–Galfenol thin film heterostructures. Applied Physics Letters, 2015, vol. 107, pp. 252903–252906. DOI: 10.1063/1.4938218.
7. Sreenivasulu G., Fetisov L.Y., Fetisov Y.K., Srinivasan G. Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Applied Physics Letters, 2012, vol. 100, pp. 052901 (4 p.). DOI: 10.1063/1.3679661.
8. Sreenivasulu G., Qu P., Piskulich E., Petrov V.M., Fetisov Y.K., Nosov A.P., Qu H., Srinivasan G. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys. Applied Physics Letters, 2014, vol. 105, pp. 32409–32408. DOI: 10.1063/1.4891536.
9. Sreenivasulu G., Petrov V.M., Fetisov L.Y., Fetisov Y.K., and Srinivasan G. Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Phys. Rev. B, 2012, vol. 86, pp. 214405 (8 pp.). DOI: 10.1103/PhysRevB.86.214405.
10. Available at: http://www.gammamet.ru/ru/gm440a.htm
11. Atulasimha J. and Flatau A.B. A review of magnetostrictive iron–gallium alloys. Smart Mater.Struct., 2011, vol. 20, pp. 043001 (15 pp.). DOI: 10.1088/0964-1726/20/4/043001.
12. Jen S.U., Tsai T.L., Kuo P.C., Chi W.L., and Cheng W.C. Magnetostrictive and structural properties of FeCoGa films. J. Appl. Phys., 2010, vol.107, pp. 013914 (4 pp.). DOI: 10.1063/1.3284962.
13. Availabe at: http://www.optosystems.ru/ru/excimer-lasers/cl-7000/
14. Shen L., Li M., Gao J., Shen Y., Li J.F., Viehland D., Zhuang X., Lam Chok Sing M., Cordier C., Saez S., and Dolabdjian C. Magnetoelectric nonlinearity in magnetoelectric laminate sensors. J. Appl. Phys., 2011, vol.110, pp. 114510 (6 pp.). DOI: 10.1063/1.3665130.
15. Nosov A.P., Gribov I.V., Moskvina N.A., Druzhinin A.V., Osotov V.I. Thin film FeGa-FeCoGa/Metglas/LGT structures for magnetoelectric magnetic field sensors. Diagnostics, Resource and Mechanics of Materials and Structures, 2018, iss. 6, pp. 117–125. DOI: 10.17804/2410-9908.2018.6.117-125.
Article reference
Sensors of Low-Frequency Magnetic Fields Based on Fega-Fecoga/metglas/quartz Structures / A. P. Nosov, I. V. Gribov, N. A. Moskvina, A. V. Druzhinin, S. S. Dubinin // Diagnostics, Resource and Mechanics of materials and structures. -
2019. - Iss. 6. - P. 77-86. - DOI: 10.17804/2410-9908.2019.6.077-086. -
URL: http://eng.dream-journal.org/issues/content/article_276.html (accessed: 01/21/2025).
|