Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. P. Polyakov

DYNAMIC POWDER COMPACTION PROCESSES

DOI: 10.17804/2410-9908.2018.2.042-082

Mathematical models of dynamic compaction and extrusion of incompact metallic materials are considered. According to the model of dynamic compaction, irreversible material volume changes occurring under the shock action are considered on the basis of the general equations of mass, momentum and energy conservation, which are written for the discontinuity surface.

A mathematical model of impact extrusion of incompact wire stock through a conical die
is proposed. It is based on the superposition of the solutions of two problems, namely, compaction of powder material in a cylindrical press mold and impact extrusion of an incompressible material. The model allows one to determine the minimum tool velocity required to perform extrusion

Keywords: powder material, dynamic compaction, shock wave, tool speed, porosity, extrusion

References:

1.Krupin A.V., Solovyev V.Ya., Popov G.S., Kr"stev M.R. Obrabotka metallov vzryvom [Explosion Processing of Metals]. Moscow, Metallurgiya Publ., 1991, 496 p. (In Russian).

2.Dmitriev A.M., Vorontsov A.L. Tekhnologiya kovki i obyemnoy shtampovki. Ch. 1. Obyemnaya shtampovka vydavlivaniem: ucheb. dlya vuzov [Technology of Forging and Bulk Stamping. Part 1. Bulk Stamping by Extrusion: Textbook for Colleges]. Moscow, Vysshaya Shkola Publ., 2002, 400 p. (In Russian).

3.Roman O.V., Gorobtsov V.G. Aktualnye problemy poroshkovoi metallurgii [Actual problems of powder metallurgy, eds., O.V. Roman, V.S. Arunachalam,]. Moscow, Metallurgiya Publ., 1990, pp. 78–99.

4.Belyakov G.V., Rodionov V.N., Samosadnyi V.P. Heating of porous material under impact compression. Combustion explosion and shock waves, 1977, vol. 13, iss. 4, pp. 524–528. DOI: 10.1007/BF00744803.

5.Gerasimov A.V., Krektuleva R.A. Numerical simulation of deformation and destruction of functionally gradient porous materials under explosive and impact loading. Mekhanika kompozitsionnykh materialov i konstruktsiy, 1999, vol. 5, no. 3, pp. 94–106. (In Russian).

6.Alekseev Yu.L., Ratnikov V.P., Rybakov A.P. Shock adiabats of porous metals. Journal of Applied Mechanics and Technical Physics, 1971, vol. 12, no. 2, pp. 257–262. DOI: 10.1007/BF00850698.

7.Anisichkin V.F. Shock compression of porous bodies. Combustion explosion and shock waves, 1979, vol. 15, no. 6, pp. 796–799. DOI: 10.1007/BF00739873.

8.Fomin V.M., Gulidov A.I., Sapozhnikov G.A., Shabalin I.I., Babakov V.A., Kuropatenko V.F., Kiselev A.B., Trishin Yu.A., Sadyrin A.I., Kiselev S.P.,Golovlev I.F. Vysokoskorostnoe vzaimodeistvie tel [High-speed interaction of bodies]. Novosibirsk, Siberian Branch of the Russian Academy of Sciences, 1999, 600 p. (In Russian).

9.Deribas A.A., Staver A.M. The shock compression of porous cylindrical bodies. Phizika Goreniya i Vzryva, 1974, vol. 10, no. 4, pp. 568–578. (In Russian).

10.Kuzmin G.E., Staver A.M. To the determination of flow parameters in shock-loaded powder materials. Fizika Goreniya i Vzryva, 1973, vol. 9, no. 6, pp. 898–905. (In Russian).

11.Yakovlev S.P., Kukhar V.D., Proskuryakov N.E., Seledkin E.M., Nechepurenko N.G. Magnito-impulsnaya shtampovka polykh tsilindricheskykh zagotovok [Magnetic Pulse Forming of Hollow Cylindrical Blanks]. Tula, Reproniks Ltd. Publ., 1998, 240 p. (In Russian).

12.Nesterenko V.F. Impul’snoe nagruzhenie geterogennykh materialov [Pulse loading of heterogeneous materials]. Novosibirsk, Nauka Publ., 1992, 200 p. (In Russian).

13.Roman O.V., Mirilenko A.P., Pikus I.M. Theory and technology of the component formation process - effect of high-speed loading conditions on the pressing mechanism. Soviet Powder Metallurgy and Metal Ceramics, 1989, vol. 28, no. 11, pp. 840–844. DOI: 10.1007/BF01198890.

14.Serdyuk G.G., Svistun L.I. Shock compaction of metal powders (theoretical research). In: Reologicheskie modeli i protsessy deformirovoniya poristykh i kompozitsionnykh materialov. Kiev, Naukova Dumka Publ., 1985, pp. 115–126. (In Russian).

15.Hermann W. Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics, 1969, vol. 40, no. 6, pp. 2490–2499. DOI: 10.1063/1.1658021.

16.Shtertser A.A. Transmission of pressure in porous-media under explosive loading.  Combustion explosion and shock waves, 1988, vol. 24, iss. 5, pp. 610–615.

17.Butcher B.M., Carroll M.M., Holt A.C. Shock wave compaction of porous aluminum. J. Appl. Phys., 1974, vol. 45, no. 9, pp. 3864–3875. DOI: 10.1063/1.1663877.

18.Carroll M.M., Holt A.C. Steady waves in ductile porous solids. J. Appl. Phys., 1973, vol. 44, no. 10, pp. 4388–4392. DOI: 10.1063/1.1661970.

19.Davison L. Shock-wave structure in porous solids. J. Appl. Phys., 1971, vol. 42, no. 13, pp. 5503–5512. DOI: 10.1063/1.1659971.

20.Hǿrlück S., Dimon P. Statistics of shock waves in a two-dimensional granular flow. Physical Review E, 1999, vol. 60, no. 1, pp. 671–686. DOI: 10.1103/PhysRevE.60.671.

21.Nunziato J.W., Walsh E.K. One-dimensional shock waves in uniformly distributed granular materials. International Journal of Solids and Structures, 1978, vol. 14, no. 8, pp. 681–689. DOI: 10.1016/0020-7683(78)90006-9.

22.Ayzenberg-Stepanenko М.V., Osharovich G.G., Sher Е.N., Yanovitskaya Z.Sh. Numerical Simulation of Shock-Wave Processes in Elastic Media and Structures. Part I: Solving Method and Algorithms. Journal of Mining Science, 2012, vol. 48, no. 1, pp. 76–95. DOI: 10.1134/S1062739148010091.

23.Afanas'eva S.A., Belov N.N., Burkin V.V., Dudarev E.F., Ishchenko A.N., Rogaev K.S., Tabachenko A.N., Khabibullin M.V., Yugov N. T. Simulation of the action of a shock wave on titanium alloy. Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 1, pp. 24–34. DOI: 10.1007/s10891-017-1535-8.

24.Roman O.V., Shmuradko V.T., Tarasov G.D. Curve of the dynamic compressibility of powder media. Journal of Engineering Physics and Thermophysics, 2006, vol. 79, no. 4, pp. 817–823.

25.Chikova O.A., Shishkina E.V., Petrova A.N., Brodova I.G. Measuring the Nanohardness of Commercial Submicrocrystalline Aluminum Alloys Produced by Dynamic Pressing. The Physics of Metals and Metallography, 2014, vol. 115, no. 5, pp. 523–528. DOI: 10.1134/S0031918X14050044.

26.Shorokhov E.V., Zhgilev I.N., Gunderov D.V., Gurov A.A. Dynamic Pressing of Titanium for Producing an Ultrafine-Grained Structure. Russian Journal of Physical Chemistry B, 2008, vol. 2, no. 2, pp. 251–254. DOI: 10.1134/S1990793108020139.

27.Rogozin V.D. Vzryvnaya obrabotka poroshkovykh materialov [Explosive Processing of Powder Materials]. Volgograd, Polytekhnik Publ., 2002, 136 p. (In Russia).

28.Kinelovskii S.A., Maevskii K.K. Model of the behavior of the mixture with different properties of the species under high dynamic loads. Journal of Applied Mechanics and Technical Physics, 2013, vol. 54, no. 4, pp. 524–530. DOI: 10.1134/S0021894413040020.

29.Vogler T. Shock Wave Perturbation Decay in Granular Materials. J. dynamic behavior mater., 2015, vol. 1, pp. 370–387. DOI: 10.1007/s40870-015-0033-3.

30.Shtern M.B., Kartuzov E.V. Formation and propagation of shock waves in highly porous materials. Powder Metallurgy and Metal Ceramics, 2016, vol. 55, no. 3–4, pp. 134–140. DOI: 10.1007/s11106-016-9788-x.

31.Leitsin V.N. A model of reacting powder medium. In: Vestnik Tomskogo Gosudarstvennogo Universiteta. Byulleten Operativnoi Tekhnicheskoi Informatsii [Bulletin of Tomsk State University: technical newsletter]. Tomsk, TGU Publ., 2001, no. 5, 40 p. (In Russian).

32.Boltachev G.Sh., Kaygorodov A.S., Volkov N.B. Densification of the granular medium by the low amplitude shock waves. Acta Mechanica, 2009, vol. 207, pp. 223–234. DOI: 10.1007/s00707-008-0127-2.

33.Boltachev G.Sh., Volkov N.B., Ivanov V.V., Kaygorodov A.S. Shock-wave compaction of the granular medium initiated by magnetically pulsed accelerated striker. Acta Mechanica, 2009, vol. 204, pp. 37–50. DOI: 10.1007/s00707-008-0046-2.

34.Olevsky E.A., Bokov A.A., Boltachev G.Sh., Volkov N.B., Zayats S.V., Ilyina A.M., Nozdrin A.A., Paranin S.N. Modeling and optimization of uniaxial magnetic pulse compaction of nanopowders. Acta Mech., 2013, vol. 224, pp. 3177–3195. DOI 10.1007/s00707-013-0939-6

35.Boltachev G.Sh., Volkov N.B., Chingina E.A. Nanopowders in Dynamic Magnetic Pulse Compaction Processes. Nanotechnologies in Russia, 2014, vol. 9, no. 11–12, pp. 650–659. DOI: 10.1134/S1995078014060056.

36.Bokov A.A., Boltachev G.Sh., Volkov N.B., Zayats S.V., Il’ina A.M., Nozdrin A.A., Paranin S.N., Olevskii E.A. Uniaxial Compaction of Nanopowders on a Magnetic_Pulse Press. Technical Physics, 2013, vol. 58, no. 10, pp. 1459–1468. DOI: 10.1134/S106378421310006X.

37.Fedotov A.F., Amosov A.P., Radchenko V.P. Modelirivanie protsessa pressovaniya poroshkovykh materialov v uslovuyakh samorasprostranyayuschegosya vysokotemperaturnogo sinteza [Modeling the Powder Material Compaction in Conditions of the Self-Propagating High-Temperature Synthesis]. Moscow, Mashinostroenie-1 Publ., 2005, 282 p. (In Russian).

38.Kiselev A.B., Yumashev M.V Deformation and Failure under Impact Loading. Model of a Thermoelastoplastic Medium. Prikladnaya Mekhanika i Tekhnicheskaya Phizika, 1990, vol. 31, no. 5, pp. 116–123. (In Russian).

39.Godunov S.K., Romenskii E.I. Elementy mekhaniki sploshnykh sred i zakony sokhraneniya [Elements of continuum mechanics and conservation laws]. Novosibirsk, Nauchnaya Kniga Publ., 1998, 267 p. (In Russian).

40.Bardet J.P., Proubet J. Application of micromechanics to incrementally nonlinear constitutive equations for granular media. In: J. Biarez, R. Gourvès, eds. Powders and Grains, Int. Conf. on micromechanics of granular media, Clermont-Ferrand, 4–8 September, 1989: Proceedings., pp. 265–273.

41.Resnyansky A.D., Bourne N.K. Shock-wave compression of a porous material. J. Appl. Phys., 2004, vol. 95, no. 4, pp. 760–1769. DOI: 10.1063/1.1640460.

42.Boshoff-Mostert L., Viljoen H. J. Comparative study of analytical methods for Hugoniot curves of porous materials. J. Appl. Phys., 1999, vol. 86, no. 3, pp. 1245–1254. DOI: 10.1063/1.370878.

43.Fenton G., Grady D., Vogler T. Shock Compression Modeling of Distended Mixtures. Journal of Dynamic Behavior Materials, 2015, vol. 1, pp. 103–113. DOI: 10.1007/s40870-015-0021-7.

44.Shen A.H., Ahrens T.J., O’Keefe J.D. Shock wave induced vaporization of porous solids. J. Appl. Phys., 2003, vol. 93, pp. 5167–5174. DOI: 10.1063/1.1563035.

45.Nigmatulin R.I. Osnovy mekhaniki geterogennykh sred [Fundamentals of the Mechanics of Heterogeneous Media]. Moscow, Nauka Publ., 1978, 336 p. (In Russian).

46.Dunin S.Z., Surkov V.V. Dynamics of the closing of pores at the shock-wave front. PMM Journal of Applied Mathematics and Mechanics, 1979, vol. 43, iss. 3, pp. 550–558. DOI: 10.1016/0021-8928(79)90103-5.

47.Kraiko A.N., Miller L.G., Shirkovskii I.A. About gas flow in porous media with surfaces of porosity Discontinuity. Prikladnaya Mekhanika i Tekhnicheskaya Phizika, 1982, no. 1, pp. 111-118. (In Russian).

48.Zhdanovich G.M. Theory of Compaction of Metal Powders, transl. Teoriya Pressovaniya Metallicheskikh Poroshkov [Theory of Metal Powder Pressing, 1969, pp. 1–262]. Foreign Technology Division, Wright-Patterson Air Force Base, OH, 1971.

49.Ivanov V.V., Nozdrin A.A. Method of determining dynamic adiabatic compression curves of powders. Technical Physics Letters, 1997, vol. 23, pp. 527–528. DOI: 10.1134/1.1261734.

50.Nowacki W.K. Stress Waves in Non-Elastic Solids, Pergamon Press, Oxford, U.K, 1978, 182 p.

51.Proskuryakov N.E., Orlov S.Yu., Cherevatyi R.S. The effect of deformation velocity on dynamic yield stress. In: Mekhanika deformiruemogo tverdogo tela i obrabotka metallov davleniem, Tula, Tulskii Gosudarstvennyi Universitet Publ., 2001, pp. 134–138. (In Russian).

52.Carroll M.M., Kim K.T., Nesterenko V.F. The effect of temperature on viscoplastic pore collapse. J. Appl. Phys., 1986, vol. 59, no. 6, pp. 1962–1967. DOI: 10.1063/1.336426.

53.Polyakov A.P., Zalazinskaya E.A. Dynamic compaction of compacts of non-compacted metal stock. Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall., 2003, no. 1, pp. 30-34. (In Russian).

54.Green R.J. A plasticity theory for porous solids. Int. J. Mech. Sci., 1972, vol. 14, iss. 4, pp. 215–224. DOI: 10.1016/0020-7403(72)90063-X.

55.Zalazinskii A.G., Polyakov A.A., Polyakov A.P. On plastic compression of a porous body. Mechanics of Solids, 2003, vol. 38, no. 1, pp. 101–110.

56.Kolachev B.A., Livanov V.A., Bukhanova A.A. Mekhanicheskie svoistva titana i ego splavov [Mechanical Properties of Titanium and its Alloys]. Moscow, Metallurgiya Publ., 1974, 544 p. (In Russian).

57.Polyakov A.P., Mokrousova M.S. Mathematical modeling of the process of dynamic compaction of a powder material. Kuznechno-Shtampovochnoe Proizvodstvo. Obrabotka Materialov Davleniem, 2004, no. 2, pp. 20–22, 24–27. (In Russian).

58.Polyakov A.P. The effect of parameters of dynamic loading on the propagation character of shock waves in a powder. Russian Journal of Non-Ferrous Metals, 2009, vol. 50, no. 1, pp. 33–38. DOI: 10.3103/S106782120901009X.

59.Druyanov B.A. Prikladnaya teoriya plastichnosti poristykh tel [Applied Theory of Plasticity of Porous Bodies]. Moscow, Mashinostroenie Publ., 1989, 168 p. (In Russian).

60.Zalazinskii A.G., Plasticheskoe deformirovanie strukturno-neodnorodnykh materialov [Plastic Deformation of Structurally Nonuniform Materials]. Yekaterinburg, Ural. Otd. Ross. Akad. Nauk Publ., 2000, 492 p. (In Russian).

61.Polyakov A.P. Impact extrusion of rod stock through conical die. Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall., 2004, no. 4, pp. 50–54. (In Russian).

62.Grigor'ev A.K., Rudskoi A.I. Deformatsiya i uplotnenie poroshkovykh materialov [Deformation and Compaction of Powder Materials]. Moscow, Metallurgiya Publ., 1992, 192 p. (In Russian).

63.Polyakov A.P. Impact extrusion process of billet production from low compressible material. Izv. VUZov. Chernaya Metallurgiya, 2006, no. 3, pp. 32–37. (In Russian).

64.Polyakov A.P. Power Parameters of the Impact Pressing Process of an Incompact Wire Stock. Russian Journal of Non-Ferrous Metals, 2007, vol. 48, no. 2, pp. 136–142. DOI: 10.3103/S1067821207020125.

                                               

PDF      

Article reference

Polyakov A. P. Dynamic Powder Compaction Processes // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 2. - P. 42-82. -
DOI: 10.17804/2410-9908.2018.2.042-082. -
URL: http://eng.dream-journal.org/issues/content/article_160.html
(accessed: 01/21/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru