Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, A. L. Osintseva

IMPROVING THE STRENGTH OF THE AISI 321 AUSTENITIC STAINLESS STEEL BY FRICTIONAL TREATMENT

DOI: 10.17804/2410-9908.2017.5.043-062

The influence of frictional treatment on the micromechanical characteristics, phase composition, residual stresses, surface roughness and damage of the AISI 321 austenitic stainless steel is investigated. The frictional treatment is performed with a hemispherical synthetic diamond indenter, loaded with 294 N, in a non-oxidizing argon medium, by varying the number of indenter strokes over the same part of the surface. It has been established that, to achieve substantial hardening, high quality and sufficient contact strength of the steel surface, it is expedient that, with the used process parameters, the frictional treatment of the AISI 321 steel be carried out with the number of double strokes not exceeding 14. Herewith, frictional treatment with 14 double strokes increases microhardness by a factor of 3.7, up to 730 HV0.025, while providing low surface roughness with Ra = 0.23 mm and highly increased ability of the surface to resist mechanical contact, this being supported by the data of kinetic microindentation.

Acknowledgment: This work was done within the Complex program of UB RAS, project no. 15-10-1-22, within the state order of FASO Russia on the subject “Structure” no. 01201463331 and with partial financial support of the Russian Foundation for Basic Research grant no. 15-08-06754_a. Electron scanning microscopy, optical profilometry and micromechanical tests were performed in Collective Use Center “Plastometriya” of the Institute of Engineering Science UB RAS.

Keywords: austenitic stainless steel, frictional treatment, microhardness, kinetic micro- indentation, phase composition, residual stresses, surface roughness, damage

References:

  1. Sun Y. Sliding wear behavior of surface mechanical attrition treated AISI 304 stainless steel. Tribology International, 2013, vol. 57, pp. 67–75. DOI: 10.1016/j.triboint.2012.07.015
  2. Lee H., Kim D., Jung J., Pyoun Y., Shin K. Influence of peening on corrosion properties of AISI 304 stainless steel. Corrosion Science, 2009, vol. 51, iss. 12, pp. 2826–2830. DOI: 10.1016/j.corsci.2009.08.008
  3. Mordyuk B.N., Prokopenko G.I. Ultrasonic impact peening for the surface properties’ management. Journal of Sound and Vibration, 2007, vol. 308, iss. 3–5, pp. 855–866. DOI: 10.1016/j.jsv.2007.03.054
  4. Baraz V.P., Kartak B.P., Mineeva O.N. Special features of friction hardening of austenitic steel with unstable gamma-phase. Metal Science and Heat Treatment, 2011, vol. 52, iss. 9–10, pp. 473–475. DOI: 10.1007/s11041-010-9302-x
  5. Hajian M., Abdollah-zadeh A., Rezaei-Nejad S.S., Assadi H., Hadavi S.M.M., Chung K., Shokouhimehr M. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing. Applied Surface Science, 2014, vol. 308, pp. 184–192. DOI: 10.1016/j.apsusc.2014.04.132
  6. Lin Y., Wang J., Zeng D., Huang R., Fan H. Advance complex liquid nitriding of stainless steel AISI 321 surface at 430 C. Journal of Materials Engineering and Performance, 2013, vol. 22, no. 9, pp. 2567–2573. DOI: 10.1007/s11665-013-0545-8
  7. Levcovici S.M., Levcovici D.T., Munteanu V., Paraschiv M.M., Preda A. Laser surface hardening of austenitic stainless steel. Journal of Materials Engineering and Performance, 2000, vol. 9, no. 5, pp. 536–540. DOI: 10.1361/105994900770345665
  8. Golzar Shahri M., Salehi M., Hosseini S.R., Naderi M. Effect of nanostructured grains on martensite formation during plasma nitriding of AISI 321 austenitic stainless steel. Surface and Coatings Technology, 2017, vol. 310, pp. 231–238. DOI: 10.1016/j.surfcoat.2016.12.019
  9. Makarov A.V. Nanostructuring friction treatment of carbon and low-alloy steels. In: Perspektivnye Materialy. T. IV: Uchebnoe posobie [Promising Materials, vol. IV: Schoolbook], D.L. Merson, ed., Tolyatti, TGU Publ., 2011, 434 p. (In Russian)
  10. Makarov A.V., Skorynina P.A., Osintseva A.L., Yurovskikh A.S., Savrai R.A. Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment. Obrabotka Metallov, 2015, no. 4 (69), pp. 80–92. DOI: 10.17212/1994-6309-2015-4-80-92 (In Russian).
  11. Makarov A.V., Korshunov L.G. Strength and wear resistance of nanocrystal structures on friction surfaces of steels with martensitic base. Russian Physics Journal, 2004, vol. 47, no. 8, pp. 857–871. DOI: 10.1007/s11182-005-0005-5
  12. Wang T.S., Yang J., Shang C.J., Li X.Y, Lv B., Zhang M., Zhang F.C. Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment. Surface and Coatings Technology, 2008, vol. 202, iss. 16, pp. 4036–4040. DOI: 10.1016/j.surfcoat.2008.02.013
  13. Li J.G., Umemoto M., Todaka Y., Tsuchiya K. Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation. Journal of Alloys and Compounds, 2007, vol. 434–435, pp. 290–293. DOI: 10.1016/j.jallcom.2006.08.167 14
  14. Makarov A.V., Savrai R.A., Pozdejeva N.A., Smirnov S.V., Vichuzhanin D.I., Korshunov L.G., Malygina I.Yu. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surface and Coatings Technology, 2010, vol. 205, iss. 3, pp. 841–852. DOI: 10.1016/j.surfcoat.2010.08.025
  15. Vychuzhanin D.I., Makarov A.V., Smirnov S.V., Pozdeeva N.A., Malygina I.Y. Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter. Journal of Machinery Manufacture and Reliability, 2011, vol. 40, iss. 6, pp. 554–560. DOI: 10.3103/S1052618811050190
  16. Kuznetsov V.P., Makarov A.V., Psakhie S.G., Savrai R.A., Malygina I.Yu., Davydova N.A. Tribological aspects in nanostructuring burnishing of structural steels. Physical Mesomechanics, 2014, vol. 17, iss. 4, pp. 250–264. DOI: 10.1134/S102995991404002X
  17. Makarov A.V., Skorynina P.A., Yurovskikh A.S., Osintseva A.L. Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel. In: AIP Conference Proceedings, 2016, vol. 1785, no. 040035. DOI: 10.1063/1.4967092
  18. Wang T., Yu J., Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surface and Coatings Technology, 2006, vol. 200, pp. 4777–4781. DOI: 10.1016/j.surfcoat.2005.04.046
  19. Pugacheva N.B., Michurov N.S., Bykova T.M. structure and properties of the Al/SiC composite material. The Physics of Metals and Metallography, 2016, vol. 117, no. 6, pp. 634–640. DOI: 10.1134/S0031918X16060119
  20. Pugacheva N.B., Michurov N.S., Senaeva E.I., Bykova T.M. Structure and thermophysical properties of aluminum-matrix composites. The Physics of Metals and Metallography, 2016, vol. 117, no. 11, pp. 1144–1151. DOI: 10.1134/S0031918X16110119
  21. Savrai R.A., Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. The behavior of gas powder laser clad NiCrBSi coatings under contact loading. Journal of Materials Engineering and Performance, 2016, vol. 25, iss. 3, pp. 1068–1075. DOI: 10.1007/s11665-016-1925-7
  22. Pugacheva N.B., Trushina E.B., Bykova T.M. Research on the tribological properties of iron borides as diffusion coatings. Journal of Friction and Wear, 2014, vol. 35, no. 6, pp. 489–496. DOI: 10.3103/S1068366614060117
  23. Pugacheva N.B., Bykova T.M., Trushina E.B. Effect of the composition of the steel base on the structure and properties of diffusion boride coatings. Uprochnyayushchie Tekhnologii i Pokrytiya, 2013, no. 4, pp. 3–7. (In Russian).
  24. Makarov A.V., Savrai R.A., Gorkunov E.S., Yurovskikh A.S., Malygina I.Yu., Davydova N.A. Structure, mechanical characteristics, and deformation and fracture features of quenched structural steel under static and cyclic loading after combined strain-heat nanostructuring treatment. Physical Mesomechanics, 2015, vol. 18, iss. 1, pp. 43–57. DOI: 10.1134/S1029959915010063
  25. Makarov A.V., Soboleva N.N., Savrai R.A., Malygina I.Yu. The improvement of micromechanical properties and wear resistance of chrome-nickel laser coating using the finishing friction treatment. Science Vector of Togliatti State University, 2015, no. 4 (34), pp. 60–67. DOI: 10.18323/2073-5073-2015-4-60-67 (In Russian).
  26. Smirnov S.V., Pugacheva N.B., Myasnikova M.V., Smirnova E.O. Heterogeneity of an Al alloy weld and simulation of its elastic deformation. Fizicheskaya Mezomekhanika, 2014, no. 1, pp. 51–56. (In Russian).
  27. Smirnov S.V., Pugacheva N.B., Myasnikova M.V. Evaluating ultimate strains to fracture of the zones of a diffusion aluminide coating. Deformatsiya i Razrushenie Materialov, 2014, no. 12, pp. 17–22. (In Russian).
  28. Pugacheva N.B., Myasnikova M.V., Michurov N.S. Simulation of the elastic deformation of laser-welded joints of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert. The Physics of Metals and Metallography, 2016, vol. 117, no. 2, pp. 195–203. DOI: 10.7868/S0015323015120074
  29. Makarov A.V., Korshunov L.G., Osintseva A.L. Sposob Obrabotki Stalnykh Izdeliy [Method for Steel Articles Working]. RU Patent 2194773, 2002. (In Russian).
  30. Rusakov A.A. Rentgenografiya Metallov [Roentgenography of Metals]. Moscow, Atomizdat Publ., 1977, 480p. (In Russian).
  31. ISO 14577-1:2015. Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method.
  32. Oliver W.C., Pharr J.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, vol. 7, no. 6, pp. 1564–1583. DOI: 10.1557/JMR.1992.1564
  33. Makarov A.V., Savrai R.A., Schastlivtsev V.M., Tabatchikova T.I., Yakovleva I.L., Egorova L.Yu. Structural features of the behavior of a high-carbon pearlitic steel upon cyclic loading. The Physics of Metals and Metallography, 2011, vol. 111, iss. 1, pp. 95–109. DOI: 10.1134/S0031918X11010091
  34. Benito J.A., Jorba J., Manero J.M., Roca A. Change of Young's modulus of cold-deformed pure iron in a tensile test. Metallurgical and Materials Transactions A, 2005, vol. 36, iss. 12, pp. 3317–3324. DOI: 10.1007/s11661-005-0006-6
  35. Cheng Y.T., Cheng C.M. Relationships between hardness, elastic modulus and the work of indentation. Applied Physics Letters, 1998, vol. 73, no. 5, pp. 614–618. DOI: 10.1063/1.121873
  36. Page T.F., Hainsworth S.V. Using nanoindentation techniques for the characterization of coated systems: a critique. Surface and Coatings Technology, 1993, vol. 61, iss. 1–3, pp. 201–208. DOI: 10.1016/0257-8972(93)90226-E
  37. Mayrhofer P.H., Mitterer C., Musil J. Structure-property relationships in single- and dualphase nanocrystalline hard coatings. Surface and Coatings Technology, 2003, vol. 174–175, pp. 725–731. DOI: 10.1016/S0257-8972(03)00576-0
  38. Milman Yu.V., Chugunova S.I., Goncharova I.V. Plasticity characteristic defined indentation method. Voprosy atomnoy nauki i tekhniki, 2011, iss. 4, pp. 182–187. (In Russian).


PDF      

Article reference

Improving the Strength of the Aisi 321 Austenitic Stainless Steel by Frictional Treatment / R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, A. L. Osintseva // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 5. - P. 43-62. -
DOI: 10.17804/2410-9908.2017.5.043-062. -
URL: http://eng.dream-journal.org/issues/content/article_149.html
(accessed: 01/21/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru