Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2025 Issue 3
(in progress)

All Issues
 
2025 Issue 2
 
2025 Issue 1
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

Yu. K. Leonov, T. L. Zorin, A. V. Lushnikov, and A. M. Zorin

NUMERICAL SIMULATION OF COUPLED HEAT EXCHANGE IN A PRODUCING RESERVOIR

DOI: 10.17804/2410-9908.2025.3.031-042

The paper reports on the numerical simulation of conjugate heat transfer occurring in an oil-saturated reservoir and a production borehole with the introduction of a heating inductive cable. It estimates the potential efficiency of using a heating cable to increase the average static temperature
of the reservoir and the extractive fluids, thus creating conditions unsuitable for the vital activity of sulfate-reducing bacteria. Due to a significant reservoir length and a well depth of more than 1 km, the problem is considered in a plane formulation using two planes: the transverse and longitudinal sections of the reservoir. The sections are aligned along the producing well. Both the thermophysical properties of the rock and the physical properties of all the structural and building materials of the well and the extracting column are taken into account. Numerical simulation was performed in a quasi-stationary formulation based on the finite volume method. The study resulted in the values of the fields of the physical quantities of the fluid (a mixture of water and oil with a fixed water cut degree), the associated petroleum gas, and the temperature fields in the longitudinal and transverse sections. It shows both the inefficiency of using a heating cable to change the temperature of the reservoir in the oil production zone and the sufficiency of the heat flow from the heating cable to maintain a fluid temperature of at least 65 °C in the borehole, which is sufficient to suppress the vital activity of sulfate-reducing bacteria in the borehole and enhance the performance of the downhole equipment.

Keywords: numerical simulation, conjugate heat transfer, oil-saturated reservoir, heating cable, heat treatment, heat flow, thermal effect on sulfate-reducing bacteria, biocorrosion control

PDF      

Article reference

Numerical Simulation of Coupled Heat Exchange in a Producing Reservoir / Yu. K. Leonov, T. L. Zorin, A. V. Lushnikov, and A. M. Zorin // Diagnostics, Resource and Mechanics of materials and structures. - 2025. - Iss. 3. - P. 31-42. -
DOI: 10.17804/2410-9908.2025.3.031-042. -
URL: http://eng.dream-journal.org/issues/2025-3/2025-3_516.html
(accessed: 11/18/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru