Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2023 Issue 3

All Issues
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. L. Vorobyev, P. V. Bykov, S. G. Bystrov, A. A. Kolotov, V. Ya. Bayankin

THE EFFECT OF THE CHEMICAL ACTIVITY OF THE IMPLANTED ELEMENT TO METAL ALLOY COMPONENTS ON THE FORMATION OF SURFACE LAYERS UNDER ION IRRADIATION

DOI: 10.17804/2410-9908.2023.3.029-043

The paper comparatively studies the effect of implanting O+ ions into the Cu50Ni50 and Cu56Mn44 alloys and M0 copper, as well as N+ ions into the VT6 titanium alloy, the 03Kh17N12M2T stainless steel, and Armco iron, on the formation of the chemical composition and changes in the structural and phase state of the surface layers. It is shown that, under conditions of implantation of ions of chemically active elements, the accumulation of the implanted impurity, the formation of chemical compounds, and their precipitation in the form of phase inclusions are determined by the chemical activity of the implanted element to the alloy components. The results obtained will allow the further development of scientific foundations for the formation of the chemical and structural-phase state in materials under nonequilibrium conditions of ion implantation.

Acknowledgments: The work was performed under state assignment No. 121030100002-0 from the Russian Ministry of Science and Higher Education. The investigation by X-ray photoelectron spectroscopy was supported by the Russian Ministry of Science and Education under agreement N 075-15-2021-1351. The equipment of the Center for Physical and Physical-Chemical Analysis Methods and Studying the Properties and Characteristics of Surfaces, Nanostructures, Materials, and Products shared research facilities of the UdmFRC UB RAS was used in the study.

Keywords: ion implantation, chemical activity, X-ray photoelectron spectroscopy, chemical composition, surface layers

References:

  1. Kozlov, D.A., Krit, B.L., Stolyarov, V.V., and Ovchinnikov, V.V. Ion-beam modification of chromium steel tribological behavior. Inorganic Materials: Applied Research, 2012, 3, 216–219. DOI: 10.1134/S2075113311030142.
  2. Komarov, F.F. Ionnaya Implantatsiya v Metally [Ion Implantation into Metals]. Metallurgiya Publ., Moscow, 1990, 262 p. (In Russian).
  3. Jin, J., Chen, Y., Gao, K., and Huang, X. The effect of ion implantation on tribology and hot rolling contact fatigue of Cr4Mo4Ni4V bearing steel. Applied Surface Science, 2014, 305, 93–100. DOI: 10.1016/j.apsusc.2014.02.174.
  4. Sungatulin, A.R., Sergeev, V.P., Fedorishcheva, M.V., and Sergeev, O.V. The effect of ion beam treatment (Cr+B) of the surface layer on the wear resistance of the 38KhN3MFA steel. Izvestiya Tomskogo Politekhnicheskogo Universiteta, 2009, 315 (2), 134–137. (In Russian).
  5. Bratushka, S.N. and Malikov, L.V. Ion-plasma modification of titanium alloys. Voprosy Atomnoy Nauki i Tekhniki, 2011, 6, 126–140. (In Russian).
  6. Rautray, T.R., Narayanan, R., and Kim, K.-H. Ion implantation of titanium-based biomaterials. Progress in Materials Science, 2011, 56 (8), 1137–1177. DOI: 10.1016/j.pmatsci.2011.03.002.
  7. Höhl, F., Berndt, H., Mayr, P., and Stock, H.-R. Implantation of N2+, O+ and CO+ ions into titanium and Ti–6A1–4V. Surface and Coatings Technology, 1995, 74–75 (2), 765–769. DOI: 10.1016/0257-8972(95)08274-3.
  8. Vorobyev, V.L., Bykov, P.V., Kolotov, A.A., Gilmutdinov, F.Z., Averkiev, I.K., and Bayankin, V.Ya. Formation of surface layers of stainless steel and titanium alloy by N+ ion implantation. Physics of Metals and Metallography, 2021, 122 (12), 1213–1219. DOI: 10.1134/S0031918X21120139.
  9. Itoh, Y., Itoh, A., Azuma, H., and Hioki, T. Improving the tribological properties of Ti–6Al–4V alloy by nitrogen-ion implantation. Surface and Coatings Technology, 1999, 111 (2–3), 172–176. DOI: 10.1016/S0257-8972(98)00728-2.
  10. Thair, L., Mudali, U.K., Rajagopalan, S., Asokamani, R., and Raj, B. Surface Characterization of Passive Film Formed on Nitrogen Ion Implanted Ti-6Al-4V and Ti-6Al-7Nb Alloys using SIMS. Corrosion Science, 2003, 45 (9), 1951–1967. DOI: 10.1016/S0010-938X(03)00027-1.
  11. Vorobyev, V.L., Gilmutdinov, F.Z., Bykov, P.B., Bayankin, V.Ya., and Kolotov, A.A. Effect of О+ ion implantation on the composition and chemical structure of nanosized surface layers of a copper–nickel alloy Cu50Ni50. Physics of Metals and Metallography, 2018, 119 (9), 852–857. DOI: 10.1134/S0031918X18090144.
  12. Vorobyev, V.L., Gilmutdinov, F.Z., Bykov, P.V., Bayankin, V.Ya., Klimova, I.N., and Pospelova, I.G. The formation of nanosized layers on the surface of 3-D metals by implantation O+ ions. Khimicheskaya Fizika i Mezoskopiya, 2018, 20 (3), 354–364. (In Russian).
  13. Behrisch, R., ed. Sputtering by Particle Bombardment I. Physical Sputtering of Single-Element Solids, Ser. Topics in Applied Physics, Springer, Berlin, Heidelberg, 1981, vol. 87, 284 p.
  14. Reshetnikov, S.M., Bakieva, O.R., Borisova, E.M., Vorobyev, V.L., Gilmutdinov, F.Z., Kartapova, T.S., and Bayankin, V.Ya. Effect of nitrogen ion implantation on corrosion-electrochemical and other properties of Armco-iron. Part II. Corrosion-electrochemical behavior of Armco-iron samples subjected to implantation of nitrogen ions. Korroziya: Materialy, Zashchita, 2018, 4, 1–8. (In Russian).
  15. Bogomolov, D.B., Gorodetsky, A.E., and Alimov, V.Kh. Structure and phase transformations caused by oxygen ion implantation into titanium. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2012, 6, 578–586, 31–40. DOI: 10.1134/S1027451012070051.
  16. Kurzina, I.A., Bozhko, I.A., Popova, N.A., Fedorishcheva, M.V., Kachaev, A.A., and Sizonenko, N.R. Features of the oxide phase formation in ion-irradiated titanium materials. Izvestiya Rossiyskoy Akademii Nauk. Seriya Fizicheskaya, 2013, 77 (9), 1271–1275. (In Russian). DOI: 10.7868/S0367676513090263.
  17. Budzynski, P. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel. Nuclear Instruments and Methods in Physics Research B, 2015, 342, 1–6. DOI: 10.1016/j.nimb.2014.09.004.
  18. Figueroa, R., Abreu, C.M., Cristóbal, M.J., and Pena, G. Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminum alloy. Wear, 2012, 276–277, 53– 60. DOI: 10.1016/j.wear.2011.12.005.
  19. Jin, J., Chen, Y., Gao, K., and Huang, X. The effect of ion implantation on tribology and hot rolling contact fatigue of Cr4Mo4Ni4V bearing steel. Applied Surface Science, 2014, 305, 93–100. DOI: 10.1016/J.APSUSC.2014.02.174.
  20. Hug, E., Thibault, S., Chateigner, S. D., and Maunoury, L. Nitriding aluminum alloys by N-multicharged ions implantation: correlation between surface strengthening and microstructure modifications. Surface and Coatings Technology, 2012, 206 (24), 5028–5035. DOI: 10.1016/j.surfcoat.2012.04.033.
  21. Zhang, J., Peng, Sh., Zhang, A., Wen, J., Zhang, T., Xu, Y., Yan, Sh., and Ren, H. Nitrogen ion implantation on the mechanical properties of AISI 420 martensitic stainless steel. Surface and Coatings Technology, 2016, 305, 132–138. DOI: 10.1016/J.SURFCOAT.2016.08.022.
  22. Shelekhov, E.V. and Sviridova, T.A. Programs for X-ray analysis of polycrystals. Metal Science and Heat Treatment, 2000, 42, 309–313. DOI: 10.1007/BF02471306.
  23. Vorobyev, V.L., Bakieva, O.R., and Mukhgalin, V.V. Changes in the chemical composition and local atomic structure of the surface of Cu-Ni and Cu-Mn alloys after irradiation with argon and oxygen ions. In: XIII Mezhdunarodny Seminar “Strukturnye Osnovy Modifitsirovaniya Materialov”, MNT-XIII [The 13th International Workshop on the Structural Basics of Material Modification, Obninsk, June 29–July 2, 2015: Abstracts]. Laboratoriya Materialov IATE Publ., Obninsk, Russia, 50–51. (In Russian).
  24. Rabinovich, V.A. and Havin, Z.Ya. Kratkiy Khimicheskiy Spravochnik [Brief Chemical Reference Book]. Khimiya Publ., Leningrad, 1978, 392 p. (In Russian).
  25. Bolgar, A.S. and Litvinenko, V.F. Termodinamicheskie Svoystva Nitridov [Thermodynamic Properties of Nitrides]. Naukova Dumka Publ., Kiev, 1980, 282 p. (In Russian).
  26. Available at: https://srdata.nist.gov/xps/EnergyTypeValSrch.aspx (date of application: 18.01.2023).
  27. Briggs, D. and Seah, M.P., eds. Practical Surface Analysis: by Auger and X-ray Photoelectron Spectroscopy, Wiley, Chichester, 1983, 533 p.
  28. Nefedov, V.I. Rentgenoelektronnaya Spektroskopiya Khimicheskikh Soedineniy [X-Ray Electron Spectroscopy of Chemical Compounds: Handbook]. Khimiya Publ., Moscow, 1984, 256 p. (In Russian).


PDF      

Article reference

The Effect of the Chemical Activity of the Implanted Element to Metal Alloy Components on the Formation of Surface Layers under Ion Irradiation / V. L. Vorobyev, P. V. Bykov, S. G. Bystrov, A. A. Kolotov, V. Ya. Bayankin // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 3. - P. 29-43. -
DOI: 10.17804/2410-9908.2023.3.029-043. -
URL: http://eng.dream-journal.org/issues/2023-3/2023-3_399.html
(accessed: 05/09/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru