Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2022 Issue 4

All Issues
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. V. Chupin, D. E. Chernogubov

STUDYING SUPERCRITICAL DEFORMATIONS OF FLAT ELLIPSOIDAL PANELS OF CONSTANT THICKNESS

DOI: 10.17804/2410-9908.2022.4.081-089

An algorithm is developed for studying the stress-strain state of elastic thin-walled shell systems consisting of shells of revolution. Based on this algorithm, a computer program is written which allows one to determine the stress-strain parameters of shells in a wide range of geometric, physical, and force parameters. Supercritical deformations of flat ellipsoidal panels of constant thickness are studied.

Keywords: shell, deformation, deflection

References:

  1. Valishvili N.V. Metody rascheta obolochek vrashcheniya na ETSVM [Methods for Calculating Shells of Revolution on a Computer]. Moscow, Mashinostroenie Publ., 1976, 278 p. (In Russian).
  2. Volmir A.S. Gibkie plastiny i obolochki [Flexible plates and shells]. Moscow, GITL Publ., 1956, 420 p. (In Russian).
  3. Vorovich I.V. and Minakova N.I. Problema ustoychivosti I chislennye metody v teorii sfericheskikh obolochek [Stability Problems and Numerical Methods in the Theory of Spherical Shells, Results of Science and Technology. Mechanics of Solid Deformable Bodies: vol. 7]. Moscow, VINITI Publ., 1974, pp. 5–86. (In Russian).
  4. Gavryushin S.S. Numerical modeling and analysis of the processes of nonlinear deformation of flexible shells. Izvestiya RAN, MTT, 1994, no. 1, pp. 109–119. (In Russian).
  5. Grigolyuk E.I. and Mamai V.I., Mekhanika deformirovaniya sfericheskikh obolochek [Deformation Mechanics for Spherical Shells]. Moscow, Izd-vo MGU Publ., 1983.
  6. Grigolyuk E.I., Lopanitsyn E.A. Influence of Axisymmetric Initial Imperfections of a Spherical Shell on its Critical Load. Izvestiya MGTU MAMI, 2008, vol. 2, No. 1, pp. 233–246. DOI: 10.17816/2074-0530-69752. (In Russian).
  7. Grigolyuk E.I., Lopanitsyn Ye.A. The axisymmetric postbuckling behaviour of shallow spherical domes. Journal of Applied Mathematics and Mechanics, 2002, vol. 66, iss. 4, pp. 605–616. DOI: 10.1016/S0021-8928(02)00079-5.
  8. Grigolyuk E.I., Lopanitsyn E.A. Asymmetric behavior of a sloping spherical shell under finite deflections. Doklady Physics, 2003, vol. 48, pp. 80–83. DOI: 10.1134/1.1560736.
  9. Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. Statika i dinamika tonkostennykh obolochechnykh konstruktsiy [Statics and dynamics of thin-walled shell structures]. Moscow, Mashinostroenie Publ., 1975, 376 p. (In Russian).
  10. Kornishin M.S. Nelineynye zadachi teorii plastin i pologikh obolochek i metody ikh resheniya [Nonlinear problems of the theory of plates and shallow shells and methods for their solution]. Moscow, Nauka Publ., 1964, 192 p. (In Russian).
  11. Bazhenov V.A., Solovei N.A., Krivenko O.P., Mishchenko O.A. Modeling of nonlinear deformation and buckling of elastic inhomogeneities shells. Structural Mechanics of Engineering Constructions and Buildings, 2014, No. 5, pp. 14–33. (In Russian).
  12. Mushtari H.M., Galimov K.Z. Nelineynaya teoriya uprugikh obolochek [The nonlinear theory of elastic shells]. Kazan, Tatknigoizdat Publ., 1957, 431 p. (In Russian).
  13. Novozhilov V.V. Osnovy nelineynoy teorii uprugosti [Fundamentals of nonlinear elasticity]. Moscow, Gostekhizdat Publ., 1948, 211 p. (In Russian).
  14. Feodosev V.I. To the calculation of a flapping membrane. Prikladnaya Matematika i Mekhanika, 1946, No. 10 (2), pp. 295–300. (In Russian).
  15. Chupin V.V., Chernogubov D.E. Silnyy izgib i ustoichivost sostavnykh obolochek vrashcheniya pri osesimmetrichnom nagruzhenii s uchetom plasticheskikh deformatsiy [Tight Bending and Stability of Compound Shells of Revolution Under Axisymmetric Loading with Allowance Made for Plastic Strains: monograph]. VINITI RAN, 2018, No. 102-B2018, 285 p. (In Russian).
  16. Chupin V.V., Chernogubov D.E. Stability of flexible spherical panels of variable thickness under various fixing conditions. Diagnostics, Resource and Mechanics of Materials and Structures, 2015, iss. 5, pp. 45–57. DOI: 10.17804/2410-9908.2015.5.045-057. Available at: https://dream-journal.org/issues/2015-5/2015-5_36.html
  17. Von Kármán T., Tsien H.-S. The buckling of spherical shells by externals pressure. Journal of the Aeronautical Sciences, 1939, vol. 7, No. 2. pp. 43–50. DOI: 10.2514/8.1019.
  18. Mescall J. Numerical solutions of nonlinear equations for shells of revolution. AIAA Journal, 1966, vol. 4, No. 11. pp. 2041–2043. DOI: 10.2514/3.3839. 


PDF      

Article reference

Chupin V. V., Chernogubov D. E. Studying Supercritical Deformations of Flat Ellipsoidal Panels of Constant Thickness // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 4. - P. 81-89. -
DOI: 10.17804/2410-9908.2022.4.081-089. -
URL: http://eng.dream-journal.org/issues/2022-4/2022-4_370.html
(accessed: 01/21/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru