Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2021 Issue 4

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. B.Vykhodets, T. E. Kurennykh

IN-SITU NUCLEAR REACTION ANALYSIS

DOI: 10.17804/2410-9908.2021.4.006-014

The principles of in-situ nuclear reaction techniques and the need for them in various fields of scientific research are considered; several examples of the application of these techniques are given. It is shown that the techniques of in-situ nuclear reactions are effective in studying the diffusion of deuterium in metals at temperatures below room temperature, the diffusion of deuterium in proton-conducting oxides, the quantum diffusion of deuterium in metals at cryogenic temperatures, and the chemical composition of oxide nanopowders when they are heated in vacuum. Promising applications of nuclear reaction techniques in situ are formulated.

Acknowledgments: The research was carried out within the state assignment from the Ministry of Science and Higher Education of the Russian Federation (theme “Function” No. AAAA-A19-119012990095-0)

Keywords: nuclear reaction techniques, deuterium, metal, oxide, nanopowder

References:

  1. The Stopping and Ranges of Ions in Matter (SRIM-2013): collection of software packages. Available at: http://www.srim.org.
  2. Trakhtenberg I.Sh., Vladimirov A.B., Rubstein A.P. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Ranges of Ions in Solids, Pergamon Press, N.Y., 1984, vol. 1.
  3. Rubshtein A.P., Trakhtenberg I., Volkova E., Vladimirov A.B., Gontar A., Uemura K. The interrelation between structure and mechanical properties of CNx films (0≤x≤0.5), deposited by arc sputtering of graphite. Diamond and Related Materials, 2005, vol. 14, pp. 1820–1823. DOI: 10.1016/J.DIAMOND.2005.07.016.
  4. Trakhtenberg I.Sh., Vladimirov A.B., Rubstein A.P., Yugov V.A., Vykhodets V.B., Kurennykh T.E., Gontar A.G., Tkach V.N., Dub S.N., and Uemura K. Mechanical properties of CNx coatings obtained by carbon arc sputtering. Journal of Superhard Materials, 2007, vol. 29, No. 3, pp. 138–141. DOI: 10.3103/S1063457607030045.
  5. Rubstein A.P., Makarova E.B., Trakhtenberg I.Sh., Kudryavtseva I.P., Bliznets D.G., Philippov Yu.I., Shlykov I.L. Osseointegration of porous titanium modified by diamond-like carbon and carbon nitride. Diamond and Related Materials, 2012, vol. 22, pp. 128–135. DOI: 10.1016/j.diamond.2011.12.030.
  6. Le Claire A. D. In: Diffusion in Solid Metals and Alloys, ed. by H. Mehrer, 1990, Group III, vol. 26, Landolt-Börnstein, Springer-Verlag, Berlin, p. 471.
  7. Kidson G.V. In: Diffusion in Solid Metals and Alloys, ed. by H. Mehrer, 1990, Group III, vol. 26, Landolt-Börnstein, Springer-Verlag, Berlin, p. 504.
  8. Amsel G., Lanford W.A. Nuclear reaction techiques in materials analysys. Ann. Rev. Nucl. Part. Sci., 1984, vol. 34, pp. 435–460. DOI:10.1146/annurev.ns.34.120184.002251.
  9. David D., Garcia E.A., Lucas X., Béranger G. Etude de la diffusion de l’oxygene dans le titane α oxyde entre 700°c et 950°c. Journal of the Less Common Metals, 1979, vol. 65, No. 1, pp. 51–69. DOI: 10.1016/0022-5088(79)90152-8.
  10. Kreuer K.D. On the complexity of proton conduction phenomena. Solid State Ionics, 2000, vol. 136–137 (1–2), pp. 149–160. DOI: 10.1016/S0167-2738(00)00301-5.
  11. Kreuer K.D., Adams St., Münch W., Fuchs A., Klock U., Maier J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics, 2001, vol. 145, pp. 295–306. DOI: 10.1016/S0167-2738(01)00953-5.
  12. Kreuer K.D. Proton-Conducting Oxides. Annu. Rev. Mater. Res., 2003, vol. 33, pp. 333–359. DOI: 10.1146/annurev.matsci.33.022802.091825.
  13. Pionke M., Mono T., Schweika W., Springer T., Schober H. Investigation of the hydrogen mobility in a mixed perovskite: Ba[Ca(1+x)/3Nb(2−x)/3]O3−x/2 by quasielastic neutron scattering. Solid State Ionics, 1997, vol. 97, pp. 497–504. DOI: 10.1016/S0167-2738(97)00077-5.
  14. Karmonik Ch., Hempelmann R., Matzke Th., Springer T. Proton Diffusion in Strontium Cerate Ceramics studied by Quasielastic Neutron Scattering and Impedance Spectroscopy. Zeitschrift für Naturforschung A, 1995, vol. 50 (6), pp. 539–548. DOI: 10.1515/zna-1995-0605.
  15. Qi Z., Volkl J., Lasser R., Wenzl H. Tritium diffusion in V, Nb and Ta. J. Phys. F: Met. Phys., 1983, vol. 13, pp. 2053–2062. DOI: 10.1088/0305-4608/13/10/015.
  16. Kashlev Y.A. Three regimes of diffusion migration of hydrogen atoms in metals. Theor. Math. Phys., 2005, vol. 145, pp. 1590−1603. DOI: 10.1007/s11232-005-0185-8.
  17. Sundell P.G., Wahnström G. Activation energies for quantum diffusion of hydrogen in metals and on metal surfaces using delocalized nuclei within the density-functional theory. Phys. Rev. Lett., 2004, vol. 92 (15), pp. 155901. DOI: 10.1103/PhysRevLett.92.155901.
  18. Di Stefano D., Mrovec M., Elsässer C. First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel. Phys. Rev. B, 2015, vol. 92, pp. 224301. DOI: 10.1103/PhysRevB.92.224301.
  19. Vykhodets V., Nefedova O., Kurennykh T., Obukhov S., Vykhodets Y. Quantum Diffusion of Deuterium in Sodium. J. Phys. Chem. A, 2019, vol. 123 (34), pp. 7536−7539. DOI: 10.1021/acs.jpca.9b06231.
  20. Kudo H., Kosaku Y., Ando Y., Higara M., Sekine T. Deuterium migration in titanium during deuteron irradiation observed by proton spectra of the d(d,p)t reaction. Journal of Nuclear Materials, 1998, vols. 258–263, part 1, pp. 622–627. DOI: 10.1016/S0022-3115(98)00244-X.
  21. Vykhodets Vladimir B., Jarvis Emily A.A., Kurennykh Tatiana E., Beketov Igor V., Obukhov Sviatoslav I., Samatov Oleg M., Medvedev Anatoly I., Davletshin Andrey E., Whyte Travis H. Inhomogeneous depletion of oxygen ions in oxide nanoparticles. Surface Science, 2016, vol. 644, pp. 141–147. DOI: 10.1016/j.susc.2015.10.011.


PDF      

Article reference

B.Vykhodets V., Kurennykh T. E. In-Situ Nuclear Reaction Analysis // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 4. - P. 6-14. -
DOI: 10.17804/2410-9908.2021.4.006-014. -
URL: http://eng.dream-journal.org/issues/2021-4/2021-4_335.html
(accessed: 04/25/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru