Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2020 Issue 6

2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

L. F. Koroleva, L. P. Larionov, M. N. Dobrinskaya

IMPLANTS AND BONE TECHNOLOGY WITH THE USE OF DOPED CALCIUM CARBONATE PHOSPHATES

The possibility of obtaining an alloplastic biomaterial for the implant based on doped calcium carbonate-phosphates and polycaprolactone is studied. Nanocrystalline calcium carbonate-phosphate doped with cations of iron, magnesium, potassium, zinc, manganese, and silicon intended for bone repair by drug delivery is investigated. Histological studies have revealed that samples after 60 days in a living organism are covered by a connective tissue capsule. The formation of blood vessels and nerve endings is observed in the capsule.

Keywords: biocompatible materials, dopes, calcium carbonate-phosphate, implant, osteogenesis, bone and dental tissues

Bibliography:

  1. Hench L.L. Bioceramics. Journal of the American Ceramic Society, 1998, vol. 81 (7), pp. 1705–1728. DOI: 10.1111/j.1151-2916.1998.tb02540.x.
  2. Hench L.L. Chronology of bioactive glass development and clinical applications. New Journal of Glass and Ceramics, 2013, vol. 3, pp. 67–73. DOI: 10.4236/njgc.2013.32011.
  3. Suchanek W., Yashimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 1998, vol. 13, iss. 1, pp. 94–117. DOI: https://doi.org/10.1557/JMR.1998.0015.
  4. Azizeh-Mitra Yousefi, Hassane Oudadesse, Rosa Akbarzadeh, Eric Wers and Anita Lucas-Girot. Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nanotechnol. Rev., 2014, vol. 3 (6), pp. 527–552. DOI: 10.1515/ntrev-2014-0013.
  5. Wang H., Zuo Y., Zou Q., Cheng L., Huang D., Wang L., Li Yu. Nano-hydroxyapatite/polyamide66 composite tissue-engineering scaffolds with anisotropy in morphology and mechanical behaviors. J. Polym. Sci. Part A: Polym. Chem., 2009, vol. 47, iss. 3, pp. 658–669. DOI: 10.1002/pola.23171.
  6. Okamoto M., John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 2013, vol. 38, pp. 1487–1503. DOI: 10.1016/j.progpolymsci.2013.06.001.
  7. Shamray V.F., Sirotinkin V.P., Smirnov I.V., Kalita V.I., Fedotov A.Yu., Barinov S.M., Komlev V.S. Structure of the hydroxyapatite plasma-sprayed coatings deposited on preheated titanium substrates. Ceramics International, 2017, 43, pp. 9105–9109. DOI: 10.1016/j.ceramint.
  8. Shapiro Jenna M., and Oyen Michelle L. Hydrogel Composite Materials for Tissue Engineering Scaffolds.  JOM: the Journal of the Minerals, Metals & Materials Society, 2013, vol. 65 (4), pp. 505–517. DOI: 10.1007/s11837-013-0575-6.
  9. Kalita V.I., Mamaev A.I., Mamaeva V.A., Malanin D.A., Komlev D.I., Gnedovets A.G., Novochadov V.V., Komlev V.S., and Radyuk A.A. Structure and shear strength of implants with plasma coatings. Inorganic Materials: Applied Research, 2016, vol. 7, no. 3, pp. 376–387. DOI: 10.1134/S2075113316030102.
  10. Poinern Gérrard Eddy Jai, Brundavanam Sridevi, Fawcett Derek. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2012, 2 (6), pp. 218–240. DOI: 10.5923/j.ajbe.20120206.02.
  11. Sadeghzade Sorour, Emadi Rahmatollah, Tavangarian Fariborz, Naderi Mozhgan. Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications. Materials Science and Engineering C, 2017, 71, pp. 431–438. DOI: 10.1016/j.msec.2016.10.042 .
  12. Koroleva L.F. Nanocrystalline Doped Calcium Carbonate-Phosphates as a Biomaterial for Osteogenesis. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014, 5 (6), pp. 704–710.
  13. Savelyeva Maria S.,  Abalymov Anatoly A.,  Lyubun German P.,  Vidyasheva Irina V., Yashchenok Alexey M.,  Douglas Timothy E. L.,  Gorin Dmitry A.,  Parakhonskiy Bogdan V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. Journal of Biomedical Materials Research: Part. A., 2017, vol. 105, iss. 1, pp. 94–103. DOI: 10.1002/jbm.a.35870 .
  14. Koroleva L. F. Doped Nanocrystalline Calcium Carbonate Phosphates. Inorganic Materials, 2010, vol. 46, no. 4, pp. 405–411. DOI: 10.1134/S0020168510040151.
  15. Koroleva L.F. An Oscillating Mechanism in the Synthesis of Doped Nanocrystalline Calcium Carbonate Phosphates. Nanotechnologies in Russia, 2010, vol. 5, nos. 9–10, pp. 635–640. DOI: 10.1134/S1995078010090077.
  16. Koroleva L.F., Larionov L.P., Gorbunova N.P. Doped Calcium Carbonate-Phosphate- Based Biomaterial for Active Osteogenesis. In: Osteogenesis, Yunfeng Lin (ed.), ch. 5, InTech, 2012, pp. 117–134. ISBN 978-953-51-0030-0. Available from: http://www.intechopen.com/books/osteogenesis/doped-calcium-carbonate-phosphatebased-biomaterial-for-active-osteogenesis
  17. Koroleva L.F., Larionov L.P., Gorbunova N.P. Biomaterial based on doped calcium carbonate-phosphate for Active Osteogenesis. Journal of Biomaterials and Nanobiotechnology, 2012, no. 3, pp. 226–237. – DOI:10.4236/jbnb.2012.32028.
  18. Koroleva L.F., Cherednichenko N.V., Dobrinskaya M.N. Doped Nanocrystalline Calcium Carbonate- Phosphate-Biomaterial with Transdermal Activity for Osteogenesis, ch. 9, pp. 231–247. In: Naveen Navani Kumar and Sinha Shishir, Nanotechnology, vol. 11: Biomaterials, STUDIUM PRESS LLC. USA-India, 2013, 484 p.  ISBN: 1-626990-11-5.
  19. Koroleva L.F. Dobrinskaya M.N. Kamantsev I.S. Doped calcium carbonate-phosphate used for bone tissue technology. Integrative Clinical Medicine, 2017, vol. 1 (2), pp. 1–7. DOI: 10.15761/ICM.1000108. ISSN: 2515-0219.
  20. Koroleva L.F. Oscillating reactions in the synthesis of doped nanocrystalline calcium carbonate phosphates of transdermal ability. Biointerface Research in Applied Chemistry, 2014, vol. 4, iss. 6, pp. 1–4. ISSN 2069-5837.
  21. Koroleva L.F., Dobrinskaya M.N., Kamantsev I.S. Doped nanocrystalline calcium carbonate-phosphate – a biomaterial for bone repair and strengthening by drug delivery. Diagnostics, Resource and Mechanics of materials and structure, 2015, iss. 5, pp. 147–152.  DOI: 10.17804/2410-9908.2015.5.147-157. Available at: http://dream-journal.org/issues/2015-5/2015-5_40.html


PDF        

 

impact factor
RSCI 0.42

 

MRDMS 2021
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2021, www.imach.uran.ru