Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2020 Issue 5

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. V. Anakhov, B. N. Guzanov, N. B. Pugacheva, T. M. Bykova, A. V. Matushkin

THE INFLUENCE OF THE CONSTRUCTIVE FEATURES OF THE PLASMOTRON ON THE QUALITY OF THE CUT DURING AIR-PLASMA CUTTING OF SHEET METALS

DOI: 10.17804/2410-9908.2020.5.058-069

The features of structure formation in the heat-affected zone, which are formed in the process of plasma cutting of 10 mm and 36 mm thick St3ps steel sheets, are presented. Cutting of thick steel is accompanied by high carburization, increasing hardness of the surface layer, and increasing surface roughness parameters. The research results allow us to conclude that the developed PMVR-9.1 plasmatron makes it possible to perform sufficiently high-quality cutting of sheet steel with a thickness of up to 40 mm and more. However, butt welding after plasma cutting without preliminary machining can be performed for a steel thickness of 10 mm.

Acknowledgments: This work was supported by the state assignment of the Ministry of Education and Science of the Russian Federation for 2018–2019, No. 13.10317.2018/11.12 (Reg. No. R&D АААА-А18-118110790009-3).

Keywords: steel, plasmatron, plasma cutting, microstructure, roughness, microhardness

References:

  1. Kaidalov A.A. Sovremennye tekhnologii termicheskoi i distantsionnoi rezki konstruktsionnykh materialov [Modern Technologies of Thermal and Remote Cutting of Constructional Materials]. Kiev, Ekotekhnologiya Publ., 2007, 456 p. (In Russian).
  2. Lashchenko G.I. Plazmennaia rezka metallov i splavov [Plasma Cutting of Metals and Alloys]. Kiev, Ekotekhnologiya Publ., 2003, 64 p. (In Russian).
  3. Koroteev A.C., Mironov V.M., Svirchuk Yu.S. Plazmotrony. Konstryktsii, kharakteristiki, raschet [Plasmatrons. Designs, characteristics, calculation]. Moscow, Mashinostroenie Publ, 1993, 296 p. (In Russian).
  4. Zhukov M.F., An'shakov A.S. Osnovy rascheta plazmotronov lineinoi skhemy [Bases of Calculation of Plasmatrons of the Linear Scheme]. Novosibirsk, Institut teplofiziki Sibirskogo otdeleniia Rossiiskoi akademii nauk SSSR, 1979, 146 p. (In Russian).
  5. Donskoi A.V., Klubnikin V.S. Elektroplazmennye protsessy i ustanovki v mashinostroenii [Electroplasma Processes and Installations in Mechanical Engineering]. Leningrad, Mashinostroenie Publ., 1979, 221 p. (In Russian).
  6. Anakhov S.V. and Pykin Yu.A. Plazmotrony: problema akusticheskoi bezopasnosti. Teplofizicheskie i gazodinamicheskie printsipy proektirovaniya maloshumnykh plazmotronov [Plasmatrons: The Problem of Acoustic Safety. Thermal Physic and Gas-Dynamic Principles of Design of a Low-Noise Plasmatrons]. Yekaterinburg, Ural. Otd., Ross. Akad. Nauk, 2012. (In Russian).
  7. Chieu Kuang Fi. Issledovanie effektivnosti tekhnologii uzkostruinoi plazmennoi rezki metallov [Investigation of the efficiency of narrow jet plasma technology for metal cutting]. PhD. Thesises, Saint-Petersburg, 2008, 143 p. (In Russian).
  8. Shalimov M.P., Anakhov S.V., Pykin Yu.A., Matushkin A.V., Matushkina I.Yu. Estimation of efficiency of gas vortex stabilization in metal cutting plasma torches. Svarka i Diagnostika, 2018, no. 2, pp. 57–61. (In Russian).
  9. Anakhov S.V. Printsipy i metody proektirovaniia v elektroplazmennykh i svarochnykh tekhnologiiakh: ucheb. posobie [The principles and Design Methods in Electroplasma and Welding Technologies]. Ekaterinburg, Izd-vo Ros. Gos. Prof-ped. Un-ta Publ., 2018, 165 p. (In Russian).
  10. Anakhov S.V., Pykin Yu.A., Matushkin A.V. Improving the efficiency of the gas-vortex stabilization system in plasmatrons for high-precisioncutting of metals. Svarochnoe Proizvodstvo, 2019, no. 4, pp. 27–30. (In Russian).
  11. Anakhov S.V., Guzanov B.N., Matushkin A.V., Pugacheva N.B., Pykin Y.A. Influence of plasma torch design on cutting quality during precision air-plasma cutting of metal. Izvestiya. Ferrous Metallurgy, 2020, vol. 63 (2), pp. 155–162. (In Russian). DOI:  10.17073/0368-0797-2020-2-155-162.
  12. GOST 8233-56. Steel. Microstructure standards. Moscow, IPK Izdatelstvo Standartov Publ., 2004. (In Russian).


PDF      

Article reference

The Influence of the Constructive Features of the Plasmotron on the Quality of the Cut During Air-Plasma Cutting of Sheet Metals / S. V. Anakhov, B. N. Guzanov, N. B. Pugacheva, T. M. Bykova, A. V. Matushkin // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 5. - P. 58-69. -
DOI: 10.17804/2410-9908.2020.5.058-069. -
URL: http://eng.dream-journal.org/issues/2020-5/2020-5_304.html
(accessed: 04/27/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru