Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2018 Issue 6

2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. A. Milytun, I. V. Gervasyeva

APPLICATION OF THE INSTRUMENTED NANOINDENTATION METHOD TO EVALUATING THE BEHAVIOR OF THE MECHANICAL PROPERTIES OF A Fe-Ga ALLOY WITH INCREASING GALLIUM CONTENT

DOI: 10.17804/2410-9908.2018.6.090-099

Five Fe-Ga samples with gallium content ranging from 13.2 to 19.7 at. % are studied in this paper. X-ray phase analysis is carried out for the certification of the phase composition of the initial samples; in order to find differences in the chemical composition inside the grains and in the near-border areas, elementary analysis of individual structure sections is carried out. It is demonstrated that in this alloy there is a distinct brittle fracture. To study the mechanical properties and to reveal their behavior with increasing Ga content, it is proposed to use a nanoindentation system. An increase in microhardness and a decrease in the plastic work of indentation with increasing Ga content are shown.

Acknowledgements: The work was performed within the state assignment from FASO Russia (Magnet, No. АААА-А18-118020290129-5) and partially supported by the RFBR (project No. 18-03-00623) and UB RAS Complex Program No. 18-10-2-5. The experimental results were obtained with the use of the equipment of the Testing Center of Nanotechnology and Advanced Materials collective use center.

Keywords: Fe-Ga alloy, instrumented microindentation, fracture

Bibliography:

  1. Clark A.E., Restorff J.B., Wun-Fogle M., Lograsso T.A., Schlagel D.L. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Transactions on Magnetics, 2000, vol. 36, pp. 3238–3240. DOI: 10.1109/20.908752.
  2. Xing Q., Du Y., McQueeney R.J., Lograsso T.A. Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior. Acta Materialia, 2008, vol. 56, pp. 4536–4546. DOI: 10.1016/j.actamat.2008.05.011
  3. Na S., Flatau A.B. Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011) [100] orientation. Scripta Materialia, 2012, vol. 66, pp. 307–310. DOI: 10.1016/j.scriptamat.2011.11.020.
  4. Clark A.E., Wun-Fogle M., Restorff J.B., Lograsso T.A. Magnetostrictive properties of galfenol alloys under compressive stress. Materials Transaction, 2002, vol. 43, pp. 881–886. DOI: 10.2320/matertrans.43.881.
  5. Kellogg R.A., Flatau A.B., Clark A.E., Wun-Fogle M., Lograsso T.A. Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe 0.81 Ga 0.19. J. Appl. Phys., 2002, vol. 91, pp. 7821–7823. DOI: 10.1063/1.1452216.
  6. Jayaraman T.V., Srisukhumbowornchai N., Guruswamy S., Free M.L. Corrosion studies of single crystals of iron–gallium alloys in aqueous environments. Corros. Sci., 2007, vol. 49, pp. 4015–4027. DOI: 10.1016/j.corsci.2007.05.010.
  7. Golovin I.S., Rivière A. Mechanisms of anelasticity in Fe-13Ga alloy. Intermetallics, 2011, vol. 19, pp. 453–459. DOI: 10.1016/j.intermet.2010.10.017.
  8. Golovin I.S. Anelasticity of Fe–Ga based alloys. Materials & Design, 2015, vol. 88, pp. 577–587. DOI: 10.1016/j.matdes.2015.08.160.
  9. Xing Q., Lograsso T.A. Effect of cooling rate on magnetoelasticity and short-range order in Fe-Ga alloys. Scripta Materialia, 2011, vol. 65, pp 359–362. DOI: 10.1016/j.scriptamat.2011.05.010.
  10. Li J.H., Gao X.X., Zhu J., Bao X.Q., Xia T., Zhang M.C. Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scripta Materialia, 2010, vol. 63, pp. 246–249. DOI: 10.1016/j.scriptamat.2010.03.068.
  11. Na S., Flatau A.B. Deformation behavior and magnetostriction of polycrystalline Fe-Ga-X (X=B, C, Mn, Mo, Nb, NbC) alloys. Journal of Applied Physics, 2008, vol. 103, pp. 07D304. DOI: 10.1063/1.2838772.
  12. Li J., Gao X., Zhu J., He C., Qiao J., Zhang W. M. Texture evolution and magnetostriction in rolled (Fe81Ga19) 99 Nb1 alloy. J. Alloys. Compd., 2009, vol. 476, pp. 529–533. DOI: 10.1016/j.jallcom.2008.09.087.
  13. Li J., Gao X., Zhu J., Li Jie, Zhang M. Ductility enhancement and magnetostriction of polycrystalline Fe-Ga based alloys. J. Alloys. Compd., 2009, vol. 484, pp. 203–206. DOI: 10.1016/j.jallcom.2009.03.008.
  14. Sun A.L., Liu J.H., Jiang C.B. Microstructural characteristics and in situ reinforcement in NbC-doped Fe81Ga19 magnetostrictive alloys. Materials & Design, 2015, vol. 88, pp. 1342–1346. DOI: 10.1016/j.matdes.2015.08.150.
  15. Takahashi T., Okazaki T., Furuya Y. Improvement in the mechanical strength of magnetostrictive (Fe-Ga-Al)-X-C (X = Zr, Nb and Mo) alloys by carbide precipitation. Scr. Mater., 2009, vol. 61, pp. 5–7. DOI: 10.1016/j.scriptamat.2008.12.032.
  16. Wu Y., Fang L., Meng C., Chen Y., Wang J., Liu J., Zhang T., Jiang C. Improved magneostriction and mechanical properties in dual-phase FeGa single crystal. Materials Research Letters, 2018, vol. 6, pp. 327–332. DOI: 10.1080/21663831.2018.1451403.
  17. Influence of Tb on structure and properties of Fe-19%Ga and Fe-27%Ga alloys / Golovin I.S., Balagurov E.M., Palacheva V.V., Emdadi A., Bobrikov I.A., Churyumov A.Y., Cheverikin V.V., Pozdniakov A.V., Mikhaylovskaya A.V., Golovin S.A. J. Alloys. Compd., 2016, vol. 707, pp. 51–56. DOI: 10.1016/j.jallcom.2016.09.151.
  18. Zhang M.C., Jiang H.L., Gao X.X., Zhu J., Zhou S.Z. Magnetostriction and microstructure of the melt-spun Fe 83 Ga 17 alloy. Journal of Applied Physics, 2006, vol. 99, pp. 023903. DOI: 10.1063/1.2164528.
  19. Liu G.D., Liu L.B., Liu Z.H., Zhang M., Chen J.L., Li J.Q., Wu G.H. Giant magnetostriction on Fe85Ga15 stacked ribbon samples. Appl. Phys. Lett., 2004, vol. 84, pp. 2124–2126. DOI:10.1063/1.1688452.
  20. Atulasimha J., Flatau A.B. A review of magnetostrictive iron–gallium alloys. Smart Mater. Struct., 2011, vol. 20, pp. 043001–043001. DOI: 10.1088/0964-1726/20/4/043001.
  21. Summers E.M., Lograsso T.A., Snodgrass J.D., Slaughter J.C. Magnetic and Mechanical Properties of Polycrystalline Galfenol. In: Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics: Proceedings, 2004, vol. 448. DOI: 10.1117/12.539781.
  22. Ikeda O., Kainuma R., Ohnuma I., Fukamichi K., Ishida K. Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system. J. Alloys. Compd., 2002, vol. 347, pp. 198–205. DOI: 10.1016/S0925-8388(02)00791-0.
  23. Pineau A., Benzerga A.A., Pardoen T. Failure of metals I: Brittle and ductile fracture. Acta Materialia, 2016, vol. 107, pp. 424–483. DOI: 10.1016/j.actamat.2015.12.034.
  24. Khachaturyan A.G., Viehland D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: part I. decomposition and confined displacive transformation. Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2308–2316. DOI: 10.1007/s11661-007-9253-z.
  25. Bhattacharyya S., Jinschek J.R., Khachaturyan A., Cao H., Li J.F., Viehland D. Nanodispersed DO3-phase nanostructures observed in magnetostrictive Fe–19% Ga Galfenol alloys. Phys. Rev. B, 2008, vol. 77, pp. 104107. DOI: 10.1103/PhysRevB.77.104107.
  26. Cao H., Gehring P.M., Devreugd C.P., Rodriguez-Rivera J.A., Li J., Viehland D. Role of Nanoscale Precipitates on the Enhanced Magnetostriction of Heat-Treated Galfenol (Fe1-xGax) Alloys. Phys. Rev. Lett., 2009, vol. 102, pp. 127201. DOI: 10.1103/PhysRevLett.102.127201.

       

PDF      

Article reference

Milytun V. A., Gervasyeva I. V. Application of the Instrumented Nanoindentation Method to Evaluating the Behavior of the Mechanical Properties of a Fe-Ga Alloy with Increasing Gallium Content [Electronic resource] // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 6. - P. 90-99. -
DOI: 10.17804/2410-9908.2018.6.090-099. -
URL: http://eng.dream-journal.org/issues/2018-6/2018-6_227.html
(accessed: 01/28/2022).  

 

impact factor
RSCI 0.42

 

MRDMS 2021
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2022, www.imach.uran.ru