Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2017 Issue 3

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

M. V. Maisuradze, M. A. Ryzhkov

INVESTIGATION OF THE MICROSTRUCTURAL BANDING IN STEEL 4140

DOI: 10.17804/2410-9908.2017.3.042-052

The microstructural banding of the 4140 steel is studied. The dependence of the anisotropy index on the bar diameter and sampling location is established in accordance with GOST R 54570 (ASTM E 1268). A relationship between microstructural banding (i.e. anisotropy index) and toughness is shown to exist. A correlation between the kinetics of isothermal austenite transformation in the 4140 steel and the chemical inhomogeneity of the steel is discussed.

Keywords: 4140 steel, microstructural banding, anisotropy index, toughness, bainite transformation

References:

  1. Eckert J.A., Howell P.R., Thompson S.W. Banding and the nature of large, irregular pearlite nodules in a hot-rolled low-alloy plate steel: a second report. Journal of Material Science, 1993, vol. 28, no. 16, pp. 4412–4420. DOI: 10.1007/BF01154950.
  2. Verhoeven J.D. A review of microsegregation induced banding phenomena in steels // Journal of Materials Engineering and Performance, 2000, vol. 9, no. 3, pp. 286–291. DOI: 10.1361/105994900770345935.
  3. Grange R.A. Effect of microstructural banding in steel. Metallurgical Transactions, 1971, vol. 2, no. 2, pp. 417–422. DOI: 10.1007/BF02663328.
  4. Caballero F. García, García-Junceda A., Capdevila C., De Andrés C.G. Evolution of microstructural banding during the manufacturing process of dual phase steels. Materials Transactions, 2006, vol. 47, no. 9, pp. 2269–2274. DOI: 10.2320/matertrans.47.2269.
  5. Shi L., Yan Z., Liu Y., Yang X., Zhang Ch., Li H. Effect of acicular ferrite on banded structures in low-carbon microalloyed steel. International Journal of Minerals, Metallurgy and Materials, 2014, vol. 21, no. 12, pp. 1167–1174. DOI: 10.1007/s12613-014-1024-4.
  6. Krauss G. Solidification, segregation, and banding in carbon and alloy steels. Metallurgical and Materials Transactions B, 2003, vol. 34, no. 6, pp. 781–794. DOI: 10.1007/s11663-003-0084-z.
  7. Bastien P.G. The mechanism of formation of banded structures. Journal of Iron and Steel Institute, 1957, vol. 187, pp. 281–291.
  8. Silin D.A., Veselov I.N., Zhukova S.Yu., Farber V.M. Microstructure and distribution of chemical elements in continuous-cast pipe blank. Steel in Translation, 2006, vol. 36, no. 4, pp. 86–90.
  9. Kirkaldy J.S., Von Destinon-Forstmann J., Brigham R.J. Simulation of banding in steels. Canadian Metallurgy Quarterly, 1962, vol. 1, iss. 1, pp. 59–81. DOI: 10.1179/cmq.1962.1.1.59.
  10. Morales-Rivas L., Roelofs H., Hasler S., Garcia-Mateo C., Caballero F.G. Detailed characterization of complex banding in air-cooled bainitic steels. Journal of Minerals and Metallurgy B, 2015, vol. 51, iss. 1, pp. 25–32. DOI: 10.2298/JMMB140331008M.
  11. Sakir Bor A. Effect of Pearlite Banding on Mechanical Properties of Hot-rolled Steel Plates. ISIJ International, 1991, vol. 31, no. 12, pp. 1445–1446. DOI: 10.2355/isijinternational.31.1445.
  12. Gulyaev A.P. Metallovedenie [Metal Science]. M., Metallurgiya Publ., 1977, 650 p. (In Russian).
  13. Shanmugam P., Pathak S.D. Some studies on the impact behavior of banded microalloyed steel. Engineering and Fracture Mechanics, 1996, vol. 53, iss. 5, pp. 991–1005. DOI: 10.1016/0013-7944(95)00159-X.
  14. Caballero F.G., Chao J., Cornide J., García-Mateo C., Santofimia M.J., Capdevila C. Toughness deterioration in advanced high strength bainitic steels. Materials Science and Engineering A, 2009, vol. 525, pp. 87–95. DOI: 10.1016/j.msea.2009.06.034.
  15. ASTM E 1268-01. Standard Practice for Assessing the Degree of Banding or Orientation of Microstructures, ASTM, 2001, 29 p.
  16. D’Errico F. Failures induced by abnormal banding in steels. Journal of Failure Analysis and Prevention, 2010, vol. 10, iss. 5, pp. 351–360. DOI: 10.1007/s11668-010-9374-3.
  17. Rodionova I.G., Zaitsev A.I., Baklanova O.N. Effect of Carbon Steel Structural Inhomogeneity on Corrosion Resistance in Chlorine-Containing Media. Metallurgist, 2016, vol. 59, nos. 9–10, pp. 774–783. DOI: 10.1007/s11015-016-0173-2.
  18. Rivera-Diaz-del-Castillo P.E.J., Van der Zwaag S. Assuring Microstructural Homogeneity in Dual Phase and TRIP Steels. Steel Research International, 2004, vol. 75, no. 11, pp. 711–715. DOI: 10.1002/srin.200405832.
  19. Xu W., Rivera-Diaz-del-Castillo P.E.J., Van der Zwaag S. Ferrite/Pearlite Band Prevention in Dual Phase and TRIP Steels: Model Development. ISIJ International, 2005, vol. 45, no. 3, pp. 380–387. DOI: 10.2355/isijinternational.45.380.
  20. Marder A.R. Deformation characteristics of dual-phase steels. Metallurgical Transactions A, 1982, vol. 13, pp. 85–92. DOI: 10.1007/BF02642418.
  21. Cai X.L., Garratt-Reed A.J., Owen W.S. The development of some dual-phase steel structures from different starting microstructures. Metallurgical Transactions A, 1985, vol. 16, iss. 4, pp. 543–557. DOI: 10.1007/BF02814228.
  22. Jatczak C.F., Girardi D.J., Rowland E.S. On banding in steel. Transactions of ASM, 1956, vol. 48, pp. 279–305.
  23. GOST 5640-68. Metallographic method for determination of microstructure of sheets and bands. M., Izdatelstvo Standartov Publ., 1988, 18 p. (In Russian).
  24. GOST 801-78. Bearing steel. Specifications. M., Izdatelstvo Standartov Publ., 1979, 45 p. (In Russian).
  25. UNI 8449. Classification of banded structure in case hardening steels, UNI, 1983, 15 p.
  26. Tasan C.C., Hoefnagels J.P.M., Geers M.G.D. Microstructural banding effects clarified through micrographic digital image correlation. Scripta Materialia, 2010, vol. 62, iss. 11, pp. 835–838. DOI: 10.1016/j.scriptamat.2010.02.014.
  27. Krebs B., Hazotte A., Germain L. Quantitative analysis of banded structures in dual-phase steels. Image Analysis and Stereology, 2010, vol. 29, no. 2, pp. 85–90. DOI: 10.5566/ias.v29. p. 85–90.
  28. GOST R 54570-2011. Assessing the degree of banding or orientation of microstructures. M., Standartinform Publ., 2012, 36 p. (In Russian).


PDF      

Article reference

Maisuradze M. V., Ryzhkov M. A. Investigation of the Microstructural Banding in Steel 4140 // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 3. - P. 42-52. -
DOI: 10.17804/2410-9908.2017.3.042-052. -
URL: http://eng.dream-journal.org/issues/2017-3/2017-3_142.html
(accessed: 04/19/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru