Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2017 Issue 2

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

P. N. Petrova, O. V. Gogoleva, A. G. Argunova, A. L. Fyodorov

ANALYSIS OF THE SCIENTIFIC, TECHNICAL AND PATENT LITERATURE IN THE FIELD OF CREATION OF FROST-RESISTANT POLYMERIC MATERIALS

DOI: 10.17804/2410-9908.2017.2.053-065

The paper analyzes the scientific, technical and patent information to select promising polymer and composite materials for products with increased reliability and durability intended for operation in Arctic regions, as well as technologies for their production that provide a high technical level of performance and competitiveness.

Keywords: polymer, polymeric composite material, frost resistance, wear resistance, friction coefficient

References:

  1. Savkin V.G., Biran V.V., Volzhin A.I., Solntsev A.P. Antifriction materials based on a polyamide binder. Plastmassy, 1986, no. 4, pp. 15–17. (In Russian)
  2. Mashkov Yu.K., Ovchar Z.N., Baibaratskaya M.Yu., Mamaev O.A. Polimernye kompozitsionnye materialy v tribotekhnike [Polymeric Composite Materials in Tribology]. M., Nedra-Bizness-Tsentr Publ., 2004, 262 p. (In Russian).
  3. Stukach A.V., Kireenko O.F., Fadin Yu.A. Interrelation of tribological and thermal characteristics for filled polyamide. Trenie i iznos, 2004, vol. 25, no. 5, pp. 539–541. (In Russian).
  4. Hitoshi Takita, Katsuo Take. Process for preparing carbon fiber-reinforced polyamide resins, US Patent 3882077, 1975.
  5. Motorin S.V. Friction insert of absorbing apparatus of railway and metro car automatic coupler made of composite polymer antifriction material, RF Patent 2595135, 2016. (In Russian).
  6. Motorin S.V. Base ring of absorbing apparatus of railway and metro car automatic coupler made of polyamide-based composite polymer antifriction material, RF Patent 2581889, 2016. (In Russian).
  7. Burya A.I., Kozlov G.V. Wear mechanisms of phenylone-based coal-plastics: structural interpretation. Trenie i iznos, 2005, vol. 26, no. 3, pp. 321–324. (In Russian).
  8. Mashkov Yu.K., Ovchar Z.N., Surikov V.I., Kalistratova L.F. Kompozitsionnye materialy na osnove politetraftoretilena [Polytetrafluoroethylene-Based Composite Materials]. М., Mashinostroenie Publ., 2005, 240 p., ill. (In Russian).
  9. Gu Dapeng, Duan Changsheng, Fan Bingli, Chen Suwen, Yang Y. Tribological properties of hybrid PTFE/Kevlar fabric composite in vacuum. Tribology International, 2016, vol.103, pp. 423–431. DOI: 10.1016/j.triboint.2016.08.004.
  10. Argunova A.G., Petrova P.N., Okhlopkova A.A., Shadrinov N.V., Gogoleva O.V., Cho JinHozx. Ultrasonication-Induced Changes in Physicomechanical and Tribotechnical Properties of PTFE Composites. Journal of the Korean Chemical Society, 2015, vol. 59, no. 3, pp. 233–237. DOI: 10.5012/jkcs.2015.59.3.233.
  11. Petrova P.N., Fedorov A.L. Development of polytetrafluoroethylene-based polymeric composites with high wear resistance intended for dry friction units. Vestnik mashinostroeniya, 2010, no. 9, pp. 50–53. (In Russian).
  12. Wani Mohd Farooq, Vohra Karan, Anand Ankush, Ul Haq Mir Irfan, Raina Ankush. Tribological Characterization of a Self Lubricating PTFE Under Lubricated Conditions. MATERIALS FOCUS, 2016, vol. 5, no. 3, pp. 293–295.
  13. Revina I.V. Technological possibilities of enhancing the quality of friction unit parts. Vestnik VSGUTU, 2012, no. 4 (39), pp. 53–58. (In Russian).
  14. Ignatieva L.N., Adamenko N.A., Agafonova G.V. Effect of explosive processing on the structure and properties of polytetrafluoroethylene. Vestnik Dalnevostochnogo otdeleniya Rossiiskoy akademii nauk, 2013, no. 5 (171), pp. 44–52. (In Russian).
  15. Hu Z.S., Dong J.H., Chen G.X. Study on anti-wear and reducing friction additive of nanometer ferric oxide. Tribol. Intern., 1998, vol. 31, no. 7, pp. 355–360. DOI: 10.1016/S0301-679X(98)00042-5.
  16. Krasnov A.P., Mit V.A., Afonicheva O.V., Said-Galiev E.E., Nikolaev A.Yu., Vasilkov A.Yu., Podshibikhin V.L., Naumkin A.Yu., Volkov I.O. Friction of silver-containing UHMWPE nanocomposites. Voprosy materialovedeniya, 2009, vol. 57, no. 1, pp. 161–169. (In Russian).
  17. Ma Y., Wang H., Bhushan B., Pei G., Wang H., Tong J., Menon C. Tribological properties of ultra-high molecular weight polyethylene (UHMWPE) filled with copper micro-powder. Materialwissenschaft Und Werkstofftechnik, 2017, vol. 48, no. 2, pp. 139–150. DOI: 10.1002/mawe.201700547.
  18. Okhlopkova A.A., Shits E.Yu., Gogoleva O.V. Tribotechnical-purpose PCM based on UHMWPE and ultrafine compounds. Trenie i iznos, 2004, vol. 25, no. 2, pp. 202–206. (In Russian).
  19. Selyutin G.E., Gavrilov Yu.Yu., Voskresenskaya E.N., Zakharov V.A., Nikitin V.E., Poluboyarov V.A. Composite materials based on ultra-high-molecular-weight polyethylene: properties, application prospects. Khimiya v intereskh ustoichivogo razvitiya, 2010, vol. 18, pp. 375–388. (In Russian).
  20. Panin S.V., Wannasri S., Pouvadin T., Ivanova L.R., Kornienko L.A., Sergeev S.V., Tkachev A.G., Fedorova T.V. Increasing tribotechnical properties of UHMW-PE based composite materials with nanomodificators by mechanical and chemical modification and surface irradiation. In: Abstracts of the 3rd International Conference “Fundamental Bases of Mechanochemical Technologies”, Novosibirsk, 2009, Novosibirsk, NGU, 2009, p. 58. (In Russian).
  21. Poluboyarov V.A., Selyutin G.E., Korotaeva Z.A., Gavrilov Yu.Yu. The applicability of the method of mechanochemical effects to the preparation of nanodispersions and modification of polymers and metals with them, as well as to the creation of ceramic materials. Perspektivnye materialy, 2008, no. 6, pp. 86–90. (In Russian).
  22. Wang Fei, Liu Lichao, Xue Ping, Ji Mingyin. Crystal Structure Evolution of UHMWPE/HDPE Blend Fibers Prepared by Melt Spinning. Polymers, 2017, vol. 9, no. 3, pp. 96. DOI: 10.3390/polym9030096.
  23. Panin S.V., Kornienko L.A., Wannasri S., Piriyaon S., Poowadin T., Ivanova L.R., Shilko S.V., Sergeev S.V. Effect of mechanical activation, ion implantation and the type of fillers on the formation of a transfer film in the tribological coupling of UHMWPE-based composites. Mekhanika kompozitnykh materialov, 2011, vol. 47, no. 5, pp. 727–738. (In Russian).
  24. Costa L., Bracco P., Brach del Prever E., Luda M.P., Trossarelli L. Analyses of products diffused into UHMWPE prosthetic components in vivo. Biomaterials, 2001, vol. 22, no. 14, pp. 307–315. DOI: 10.1016/S0142-9612(00)00182-4.
  25. Panin S.V., Kornienko L.A., Ivanova L.R., Piriyayon S., Poowadin T., Mandoung T., Sarondjaitam N., Shilko S.V., Wannasri S. Design of polymeric UHMWPE-based composites with increased tribotechnical properties by mechanical activation, ion implantation, chemical modification and nanofiller enforcement. In: Proceedings of the third International Conference on heterogeneous material mechanics (ICHMM-2011), May 22–26, 2011, Shanghai (Chong Ming Island). China, Shanghai, 2011, pp. 612–615.
  26. Panin S.V., Kornienko L.A., Piriyaon S., Ivanova L.R., Shil'ko S. V., Pleskachevskii Yu.M., Orlov V.M. Antifrictional composites based on chemically modified UHMWPE. Part 2. The effect of nanofillers on the mechanical and triboengineering properties of chemically modified UHMWPE. Journal of Friction and Wear, 2011, vol. 32, no. 4, pp. 233–239. DOI: 10.3103/S106836661104009X.
  27. Sviridenok A.I., Meshkov V.V. High-speed sliding friction of polymer composites. Trenie i Iznos, 2005, vol. 26, no. 1, pp. 32–36.
  28. Anisimov A.V., Bakhareva V.E., Karpinsky G.S, Lishevich I.V., Nikitina I.V. Application prospects of superstructural thermoplastics intended for sliding bearings of centrifugal pumps. Nasosy. Turbiny. Systemy, 2014, no. 3 (12), pp. 3–13. (In Russian).
  29. Bazhenov S.L., Berlin A.A., Kulkov A.A., Oshmyan V.G. Polimernye kompozitsionnye materialy [Polymeric Composite Materials]. Dolgoprudnyi, Izdatelskiy Dom Intellekt Publ., 2010, 352 p. (In Russian).
  30. Richardson M. Promyshlennye polimernye kompozitsionnye materialy [Industrial Polymeric Composite Materials]. M., Khimiya Publ., 1980, 472 p. (In Russian).
  31. Yurkhanov V.B., Shavrin E.G., Darienko I.N., Chistyakov P.A., Matasova A.A. Antifrictional composite polymer material, RF Patent 2524958, 2013. (In Russian).
  32. Adam A., Deinert J. Plain bearing material comprising PTFE and chalk and composite multi-layer material, US Patent 5686176, 1997.
  33. Kolyago G.G., Struk V.A. Materialy na osnove nenasyshchennykh poliefirov [Materials Based on Unsaturated Polyesters]. М., Nauka i Tekhnika Publ., 1990, 144 p. (In Russian).
  34. Bogdanovich S.P., Pesetskiy S.S. The metal counterbody effect on triboengineering properties of compatibilized polyamide 6-polyethylene blend: mass transfer analysis. Trenie i iznos, 2004, vol. 25, no. 5, pp. 531–538. (In Russian).
  35. Krasnov A.P., Said-Galiev E.E., Afonicheva O.V., Stakhanov A.I., Mit V.A., Nikolaev A.Yu., Atamanov A.V., Klabukova L.F., Kalinichenko V.A., Topolnitsky O.R., Kassis M., Khokhlov A.R. Frictional behavior of incompatible UHMWPE-PMMA polymer blends obtained in the environment of supercritical dioxide. Trenie i Iznos, 2007, vol. 28, no. 3, pp. 288–295. (In Russian).
  36. Nikulin A.V., Savelov A.S., Sachek B.Ya. A comparative analysis of the triboengineering properties of phenolic and epoxy carboplastics. Journal of Friction and Wear, 2010, vol. 31, no. 3, pp. 198–202. DOI: 10.3103/S1068366610030074.
  37. Adrianova O.A. Modified polymeric and elastomeric tribotechnical materials to be used in facilities working in the North. Doctoral thesis, 2000, 337 p. (In Russian).
  38. Kryzhanovsky V.K., Burlov V.V. Plastmassovye detali tekhnicheskikh ustroistv (vybor materiala, konstruirovanie, raschet) [Plastic Parts of Engineering Devices (material selection, design, calculation)]. SPb, Nauchnye osnovy tekhnologii Publ., 2014, 456 p. (In Russian).
  39. Barvinsky I.A., Barvinskaya I.E. Spravochnik po litievym termoplastichnym materialam. Svoistva, primery primeneniya, pererabotka, torgovye marki, izgotoviteli [Reference Book on Lithium Thermoplastic Materials. Properties, Applications, Processing, Trademarks, Producers. CD-ROM, version 1.3]. Inzhenernaya Firma AB Universal Publ, 2004. (In Russian).
  40. Okhlopkova A.A., Adrianova O.A., Popov S.N. Modifikatsiya polimerov ultradispersnymi soedineniyami [Modification of Polymers by Ultrafine Compounds]. Yakutsk, YaF Izd-va SO RAN Publ., 2003, 224 p. (In Russian).
  41. Gogoleva O.V., Okhlopkova A.A., Petrova P.N. Development of Self-Lubricating Antifriction Materials Based on Polytetrafluoroethylene and Modified Zeolites. Journal of Friction and Wear, 2014, vol. 35, no. 5, pp. 383–388. DOI: 10.3103/S1068366614050055.
  42. Ammosova O.A., Argunova A.G., Botvin G.V. et al. Modifitsirovannye polymernye i kompositsionnye materialy dlya severnykh usloviy [Modified Polymeric and Composite Materials for Northern Conditions]. Novosibirsk, Izd-vo SO RAN Publ., 2017, 217 p. (In Russian).
  43. Gogoleva O.V., Popov S.N., Petrova P.N., Okhlopkova A.A. Structure and properties of composites based on ultrahigh-molecular polyethylene and thermally expanded graphite. Russian Engineering Research, 2014, vol. 34, no. 12, pp. 743–746. DOI: 10.3103/S1068798X14120120.
  44. Argunova A.G. Development and investigation of functional composites based on polytetrafluoroethylene and nanostructured aluminum and magnesium oxides. Candidate thesis, 2012. (In Russian).
  45. Petukhova E.S., Savvinova M.E., Krasnikova I.V., Mishakov I.V., Okhlopkova A.A., Dae-Yong Jeong, Jin-Ho Cho. Reinforcement of Polyethylene Pipes with Modified Carbon Microfibers. Journal of the Korean Chemical Society, 2016, vol. 60, iss. 3, p. 177–180. DOI: 10.5012/jkcs.2016.60.3.177.
  46. Chukov D.I. Formation of the structure and properties of carbon-fiber-reinforced composite materials based on ultra-high-molecular-weight polyethylene. Candidate thesis, Moscow, 2013. (In Russian).
  47. Gogoleva O.V., Petrova P.N., Popov S.N., Okhlopkova A.A. Wear-resistant composite materials based on ultrahigh molecular weight polyethylene and basalt fibers. Journal of Friction and Wear, 2015, vol. 36, no. 4, pp. 301–305. DOI: 10.3103/S1068366615040054.
  48. Okhlopkova A.A., Vasil’ev S.V., Petrova P.N., Gogoleva O.V. Frictional basalt-reinforced polymers based on polytetrafluoroethylene. Russian Engineering Research, 2016, vol. 36, no. 4, pp. 285–288. DOI: 10.3103/S1068798X16040134.


PDF      

Article reference

Analysis of the Scientific, Technical and Patent Literature in the Field of Creation of Frost-Resistant Polymeric Materials / P. N. Petrova, O. V. Gogoleva, A. G. Argunova, A. L. Fyodorov // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 2. - P. 53-65. -
DOI: 10.17804/2410-9908.2017.2.053-065. -
URL: http://eng.dream-journal.org/issues/2017-2/2017-2_137.html
(accessed: 04/20/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru