Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2015 Issue 5

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. V. Dobromyslov, N. I. Taluts

AN ELECTRON-MICROSCOPIC STUDY OF THE DEFORMATION STRUCTURE OF THE 12Kh18N10T STEEL AFTER EXPLOSIVE LOADING IN SPHERICAL SYSTEMS

DOI: 10.17804/2410-9908.2015.5.109-117

Optical metallography, transmission electron microscopy and microhardness measurements are used to investigate the deformed structure of retained shells made of the 12Kh18N10T steel after explosive loading. It has been established that the high-rate plastic deformation of the steel under this loading occurs both by slipping and twinning. It is shown that there is a strong localization of deformation resulted in the formation of rough traces of slip. The high pressure at the shock wave front results in the fact that the critical shear stress in one grain is achieved in several slip systems simultaneously, irrespective of the Schmid factor. Therefore, several nonequivalent systems become active slip systems at once. Microtwins form large clusters in which they mainly belong to one or two systems of twinning. The average thickness of microtwins is ~ 30‒40 nm. Polymorphic γ → α transformation has been revealed under explosive loading. The α-phase is observed in the form of fine precipitates. It has been found that the microhardness almost doubles after shock loading, as compared with that of the initial state.

Keywords: 12Kh18N10T steel, shock waves, high-rate plastic deformation, structure

References:

  1. Meyers M.F., Murr L.E. Defect generation in shock-wave deformation. In: M.A. Meyers, L.E. Murr, eds. Shock waves and high-strain-rate phenomena in metals. New York, Plenum Press, 1981, pp. 487–530.
  2. Sencer B.H., Maloy S.A., Gray III G.T. The influence of explosive-driven shock prestraining at 35 GPa and of high deformation on the structure/property behavior of 316 L austenitic stainless steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, vol. 36, iss. 7, pp. 1825–1831. DOI: 10.1016/j.actamat.2005.03.037.
  3. Lee Woel-Shyan, Lin Chi-Feng. Comparative study of the impact response and microstructure of 304L stainless steel with and without prestrain. Metallurgical and Materials Transactions A, 2002, vol. 33, issue 9, pp. 2801–2810. DOI: 10.1007/s11661-002-0265-4.
  4. Murr L.E., Staudhammer K.P., Hecker S.S. Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II. Microstructural Study. Metallurgical Transactions A, 1982, vol. 13, iss. 4, pp. 627–635. DOI: 10.1007/BF02644428.
  5. Malloy S.A., Gray III G. T., Cady C.M., Rutherford R.W., Hihson R.S. The influence of explosive-driven “taylor-wave” shock prestraining on the structure/property behavior of 304 stainless steel. Metallurgical and Materials Transactions A, 2004, vol. 35, iss. 9, pp. 2617–2624. DOI: 10.1007/s11661-004-0207-4.
  6. Firraro D., Matteis P., Scavino G., Ubertalli G., Ienco M. G., Pellati G., Piccardo P., Pinasco M.R., Stagno E., Montanari R., Tata M.E., Brandimarte G., Petralia S., Mechanical twins in 304 stainless steel after small-charge explosion. Materials Science and Engineering: A, 2006, vol. 424, iss. 1–2, pp. 23–32. DOI: 10.1016/j.msea.2006.02.036.
  7. Kozlov E.A., Brichikov S.A., Boyarnikov D.S., Kuchko D.P., Degtyarev A.A. Special features in convergence dynamics of steel shells under their explosive loading. Results of laser-interferometric measurements. The Physics of Metals and Metallography, 2011, vol. 112, iss. 4, pp. 389–404. DOI: 10.1134/S0031918X11040259.
  8. Rutkowska-Gorczyca M., Podrez-Radziszwska M., Kajtoch J. Corrosion resistance and microstructure of steel AISI 316L after cold plastic deformation. Metallurgy and foundry engineering, 2009, vol. 35, no. 1, pp. 35–42.
  9. Borodin E.N., Atroshenko S. A., Mayer A.E. Distribution of dislocations and twins in copper and 18Cr-10Ni-Ti steel under shock-wave loading. Technical Physics, 2014, vol. 59, iss. 8, pp. 1163–1170. DOI: 10.1134/S1063784214080076.
  10. Bogers A.J., Burgers W.G. Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the bcc lattice. Acta Metallurgica, 1964, vol. 12, iss. 2, pp. 255–261. DOI: 10.1016/0001-6160(64)90194-4.
  11. Talonen J., Hanninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Materialia, 2007, vol. 55, iss. 18, pp. 6108–6118. DOI: 10.1016/j.actamat.2007.07.015.
  12. Zel'dovich V.I., Kheifets A.E., Frolova N.Yu., Muzyrya A.K., Simonov A.Yu. Formation of martensite in austenitic steel upon loading by quasi-spherical converging shock waves. The Physics of Metals and Metallography, 2013, vol. 114, iss. 12, pp. 1031–1037. DOI: 10.1134/S0031918X13120090.

       

PDF      

Article reference

Dobromyslov A. V., Taluts N. I. An Electron-Microscopic Study of the Deformation Structure of the 12kh18n10t Steel after Explosive Loading in Spherical Systems // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 5. - P. 109-117. -
DOI: 10.17804/2410-9908.2015.5.109-117. -
URL: http://eng.dream-journal.org/issues/2015-5/2015-5_51.html
(accessed: 04/26/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru