Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2015 Issue 5

All Issues
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. V. Chupin, D. E. Chernogubov

STABILITY OF FLEXIBLE SPHERICAL PANELS OF VARIABLE THICKNESS UNDER VARIOUS FIXING CONDITIONS

DOI: 10.17804/2410-9908.2015.5.045-057

An algorithm for studying the stability of elastic thin-shell systems consisting of shells of revolution supported by rings. On the basis of this algorithm, a computer program has been written that allows one to determine the values of critical loads and buckling modes of shells in a wide range of geometrical, physical and power parameters. The stability of spherical panels of variable thickness under different conditions of fixing has been studied

Keywords: shell, stability, critical load

References:

  1. Valishvili N.V. Metody rascheta obolochek vrashcheniya na ETSVM [Methods for Calculating Shells of Revolution on a Computer]. M., Mashinostroenie Publ., 1976, 278 p. (In Russian).
  2. Volmir A.S. Ustoichivost deformiruemyh sistem [The Stability of Deformable Systems]. M., Nauka Publ., 1976, 984 p. (In Russian).
  3. Godunov S.K. On the numerical solution of boundary value problems for systems of ordinary differential equations. Uspekhi Matematicheskikh Nauk, 1961, no. 16, pp. 171–174. (In Russian).
  4. Grigolyuk E.I., Shalashilin V.I. Problemy nelineinogo deformirovaniya [Problems of Nonlinear Deformation]. M., Nauka Publ., 1988, 231 p. (In Russian).
  5. Grigorenko Ya.M. Izotropnye i anizotropnye sloistye obolochki vrashcheniya peremennoi zhestkosti [Isotropic and Anisotropic Laminated Shells of Revolution of Variable Rigidity]. Kiev, Naukova Dumka Publ., 1973, 228 p. (In Russian).
  6. Grigorenko Ya.M., Kryukov N.N. Solving nonlinear boundary value problems of the statics of flexible laminated shells in the supercritical region. Soviet Applied Mechanics, 1983, Vol. 19, iss. 3, pp 217–221.
  7. Emelyanov I.G. Kontaktnye zadachi teorii obolochek [Contact Problems of the Theory of Shells]. Ekaterinburg, UrO RAN, 2009, 184 p. (In Russian).
  8. Kantorovich L.V., Akilov G.R. Funktsionalnyi analiz v normirovannykh prostranstvakh [Functional Analysis in Normed Spaces]. M., Fizmatgiz Publ., 1959, 684 p. (In Russian).
  9. Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. Statika i dinamika tonkostennykh obolochechnykh konstruktsiy [Statics and Dynamics of Thin-Walled Shell Structures]. M., Mashinostroenie Publ., 1975, 376 p. (In Russian).
  10. Klimanov V.I., Chupin V.V. Statika i Ustoichivost gibkikh neodnorodnykh obolochechnykh sistem [Statics and Stability of Flexible Shell Heterogeneous Systems]. Krasnoyarsk, KrasGU Publ., 1986, 182 p. (In Russian).
  11. Korovaitsev A.V. An algorithm for studying the state of shallow shells of revolution under axisymmetric large displacements. Izvestiya vuzov. Mashinostroenie, 1981, iss. 10, pp. 12–15. (In Russian).
  12. Mushtari Kh.M., Galimov K.Z. Nelineynaya teoriya uprugikh obolochek [The Nonlinear Theory of Elastic Shells]. Kazan, Tatknigoizdat Publ., 1957, 431 p. (In Russian).
  13. Myachenkov V.I., Grigoriev I.V. Raschet obolochechnykh konstruktsiy na EVM [Calculation of Shell Structures on a Computer]. M., Mashinostroenie Publ., 1981, 216 p. (In Russian).
  14. Novozhilov V.V. Osnovy nelineynoy teorii uprugosti [Fundamentals of Nonlinear Elasticity]. M., Gostekhizdat Publ., 1948, 211 p. (In Russian).
  15. Reissner E. Linear and nonlinear theory of shells. In: Tonkostennye obolochechnye konstruktsii [Thin-Walled Shell Structures]. M., Mashinostroenie Publ., 1980, pp. 55–69. (In Russian).
  16. Chupin V.V., Chernogubov D.E. Stability of elastic composite shell structures under axisymmetric loading. In: Stroitelstvo i obrazovanie [Civil Engineering and Education]. Ekaterinburg, UrFU, 2011, iss. 14, pp. 29–32. (In Russian).
  17. Shapovalov L.A. Equations of thin elastic shells for asymmetric deformations. Mechanics of Solids, 1976, iss. 3, pp. 62–72.

     

PDF      

Article reference

Chupin V. V., Chernogubov D. E. Stability of Flexible Spherical Panels of Variable Thickness under Various Fixing Conditions // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 5. - P. 45-57. -
DOI: 10.17804/2410-9908.2015.5.045-057. -
URL: http://eng.dream-journal.org/issues/2015-5/2015-5_36.html
(accessed: 01/21/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru